On doubly symmetric periodic orbits

被引:4
|
作者
Frauenfelder, Urs [1 ]
Moreno, Agustin [2 ,3 ]
机构
[1] Augsburg Univ, Augsburg, Germany
[2] Inst Adv Study, Princeton, NJ 08540 USA
[3] Heidelberg Univ, Heidelberg, Germany
基金
美国国家科学基金会;
关键词
Hamiltonian dynamics; Symplectic geometry; Periodic orbits; Celestial mechanics; Symmetries;
D O I
10.1007/s10569-023-10135-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this article, for Hamiltonian systems with two degrees of freedom, we study doubly symmetric periodic orbits, i.e., those which are symmetric with respect to two (distinct) commuting antisymplectic involutions. These are ubiquitous in several problems of interest in mechanics. We show that, in dimension four, doubly symmetric periodic orbits cannot be negative hyperbolic. This has a number of consequences: (1) All covers of doubly symmetric orbits are good, in the sense of Symplectic Field Theory (Eliashberg et al. Geom Funct Anal Special Volume Part II:560-673, 2000); (2) a non-degenerate doubly symmetric orbit is stable if and only if its CZ-index is odd; (3) a doubly symmetric orbit does not undergo period doubling bifurcation; and (4) there is always a stable orbit in any collection of doubly symmetric periodic orbits with negative SFT-Euler characteristic (as coined in Frauenfelder et al. in Symplectic methods in the numerical search of orbits in real-life planetary systems. Preprint arXiv:2206.00627). The above results follow from: (5) A symmetric orbit is negative hyperbolic if and only its two B -signs (introduced in Frauenfelder and Moreno 2021) differ.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Periodic orbits in polygonal billiards
    Biswas, D
    PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (02): : 487 - 501
  • [42] Isolating blocks for periodic orbits
    Bertolim, M. A.
    De Rezende, K. A.
    Neto, O. Manzoli
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2007, 13 (01) : 121 - 134
  • [43] Periodic orbits for fuzzy flows
    Ceeconello, M. S.
    Bassanezi, R. C.
    Brandao, A. V.
    Leite, J.
    FUZZY SETS AND SYSTEMS, 2013, 230 : 21 - 38
  • [44] On hyperbolic measures and periodic orbits
    Ugarcovici, Ilie
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 16 (02) : 505 - 512
  • [45] Isolating Blocks for Periodic Orbits
    M. A. Bertolim
    K. A. de Rezende
    O. Manzoli Neto
    Journal of Dynamical and Control Systems, 2007, 13 : 121 - 134
  • [46] Regular and irregular periodic orbits
    Contopoulos, G
    Grousouzakou, E
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1996, 65 (1-2) : 33 - 56
  • [47] On periodic orbits in cotangent bundles of non-compact manifolds
    van den Berg, J. B.
    Pasquotto, F.
    Rot, T.
    Vandervorst, R. C. A. M.
    JOURNAL OF SYMPLECTIC GEOMETRY, 2016, 14 (04) : 1145 - 1173
  • [48] ON THE EXISTENCE OF PERIODIC ORBITS FOR MAGNETIC SYSTEMS ON THE TWO-SPHERE
    Benedetti, Gabriele
    Zehmisch, Kai
    JOURNAL OF MODERN DYNAMICS, 2015, 9 : 141 - 146
  • [49] On the periodic orbits of the perturbed Wilberforce pendulum
    Teresa de Bustos, M.
    Lopez, Miguel A.
    Martinez, Raquel
    JOURNAL OF VIBRATION AND CONTROL, 2016, 22 (04) : 932 - 939
  • [50] Chaotic diffusion on periodic orbits and uniformity
    Dana, I
    Chernov, VE
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 330 (1-2) : 253 - 258