On doubly symmetric periodic orbits

被引:4
|
作者
Frauenfelder, Urs [1 ]
Moreno, Agustin [2 ,3 ]
机构
[1] Augsburg Univ, Augsburg, Germany
[2] Inst Adv Study, Princeton, NJ 08540 USA
[3] Heidelberg Univ, Heidelberg, Germany
基金
美国国家科学基金会;
关键词
Hamiltonian dynamics; Symplectic geometry; Periodic orbits; Celestial mechanics; Symmetries;
D O I
10.1007/s10569-023-10135-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this article, for Hamiltonian systems with two degrees of freedom, we study doubly symmetric periodic orbits, i.e., those which are symmetric with respect to two (distinct) commuting antisymplectic involutions. These are ubiquitous in several problems of interest in mechanics. We show that, in dimension four, doubly symmetric periodic orbits cannot be negative hyperbolic. This has a number of consequences: (1) All covers of doubly symmetric orbits are good, in the sense of Symplectic Field Theory (Eliashberg et al. Geom Funct Anal Special Volume Part II:560-673, 2000); (2) a non-degenerate doubly symmetric orbit is stable if and only if its CZ-index is odd; (3) a doubly symmetric orbit does not undergo period doubling bifurcation; and (4) there is always a stable orbit in any collection of doubly symmetric periodic orbits with negative SFT-Euler characteristic (as coined in Frauenfelder et al. in Symplectic methods in the numerical search of orbits in real-life planetary systems. Preprint arXiv:2206.00627). The above results follow from: (5) A symmetric orbit is negative hyperbolic if and only its two B -signs (introduced in Frauenfelder and Moreno 2021) differ.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] On doubly symmetric periodic orbits
    Urs Frauenfelder
    Agustin Moreno
    Celestial Mechanics and Dynamical Astronomy, 2023, 135
  • [2] CONNECTING SYMMETRIC AND ASYMMETRIC FAMILIES OF PERIODIC ORBITS IN SQUARED SYMMETRIC HAMILTONIANS
    Blesa, Fernando
    Piasecki, Slawomir
    Dena, Angeles
    Barrio, Roberto
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2012, 23 (02):
  • [3] Symmetric Periodic Orbits in the Anisotropic Schwarzschild-Type Problem
    Vasile Mioc
    Mira-Cristiana Anisiu
    Michael Barbosu
    Celestial Mechanics and Dynamical Astronomy, 2005, 91 : 269 - 285
  • [4] Symmetric periodic orbits in the anisotropic Schwarzschild-type problem
    Mioc, V
    Anisiu, MC
    Barbosu, M
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2005, 91 (3-4) : 269 - 285
  • [5] PERIODIC ORBITS OF SINGULAR RADIALLY SYMMETRIC SYSTEMS
    Li, Shengjun
    Li, Wulan
    Fu, Yiping
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (03) : 393 - 401
  • [6] Planar Symmetric Periodic Orbits in Four Dipole Problem
    P. G. Kazantzis
    C. D. Desiniotis
    Astrophysics and Space Science, 2005, 295 : 339 - 362
  • [7] On the special role of symmetric periodic orbits in a chaotic system
    Benet, L
    Jung, C
    Papenbrock, T
    Seligman, TH
    PHYSICA D-NONLINEAR PHENOMENA, 1999, 131 (1-4) : 254 - 264
  • [8] Planar symmetric periodic orbits in four dipole problem
    Kazantzis, PG
    Desiniotis, CD
    ASTROPHYSICS AND SPACE SCIENCE, 2005, 295 (03) : 339 - 362
  • [9] Symmetric periodic orbits in proto-stellar systems
    Mioc, Vasile
    Anisiu, Mira-Cristiana
    Stavinschi, Magda
    Dynamics of Populations of Planetary Systems, 2005, 197 : 467 - 470
  • [10] Symmetric Periodic Orbits and Schubart Orbits in The Charged Collinear Three-Body Problem
    Ortega, Alberto Castro
    Falconi, Manuel
    Lacomba, Ernesto A.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2014, 13 (02) : 181 - 196