Geometry of cotangent bundle of Heisenberg group

被引:1
|
作者
Sukilovic, Tijana [1 ]
Vukmirovic, Srdan [1 ]
机构
[1] Univ Belgrade, Fac Math, Belgrade, Serbia
关键词
Cotangent bundle; Heisenberg group; Left invariant metrics; Pseudo-K?hler metrics; HOMOGENEOUS NILMANIFOLDS; COMPLEX STRUCTURES; METRICS; KAHLER;
D O I
10.1016/j.difgeo.2023.101997
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the classification of left invariant Riemannian metrics on the cotangent bundle of the (2n+1)-dimensional Heisenberg group up to the action of the automorphism group is presented. Moreover, it is proved that the complex structure on this group is unique, and the corresponding pseudo-Kahler metrics are described and shown to be Ricci flat. It is known that this algebra admits an ad-invariant metric of neutral signature. Here, the uniqueness of such metric is proved.(c) 2023 Published by Elsevier B.V.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Riemannian and sub-Riemannian structures on a cotangent bundle of Heisenberg group
    Sukilovic, Tijana
    Vukmirovic, Srdjan
    FILOMAT, 2023, 37 (25) : 8481 - 8488
  • [2] NOTES ON THE GEOMETRY OF COTANGENT BUNDLE AND UNIT COTANGENT SPHERE BUNDLE
    Kacimi, Bouazza
    Kadi, Fatima Zohra
    Ozkan, Mustafa
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (03): : 845 - 859
  • [3] G-tables and the Poisson structure of the even cohomology of cotangent bundle of the Heisenberg Lie group
    Cagliero, Leandro
    Gutierrez, Gonzalo
    JOURNAL OF ALGEBRA, 2025, 674 : 205 - 234
  • [4] Geometry of the cotangent bundle with Sasakian metrics and its applications
    F OCAK
    A A SALIMOV
    Proceedings - Mathematical Sciences, 2014, 124 : 427 - 436
  • [5] Geometry of the cotangent bundle with Sasakian metrics and its applications
    Ocak, F.
    Salimov, A. A.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (03): : 427 - 436
  • [6] MANIFOLDS WITH NEF COTANGENT BUNDLE
    Hoering, Andreas
    ASIAN JOURNAL OF MATHEMATICS, 2013, 17 (03) : 561 - 568
  • [7] The Sasakian Geometry of the Heisenberg Group
    Boyer, Charles P.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2009, 52 (03): : 251 - 262
  • [8] Lorentzian geometry of the Heisenberg group
    Rahmani, N.
    Rahmani, S.
    GEOMETRIAE DEDICATA, 2006, 118 (01) : 133 - 140
  • [9] MODIFIED SYSTEMS FOUND BY SYMMETRY REDUCTION ON THE COTANGENT BUNDLE OF A LOOP GROUP
    MARSHALL, I
    JOURNAL OF GEOMETRY AND PHYSICS, 1995, 16 (04) : 305 - 326
  • [10] COTANGENT BUNDLE TO THE GRASSMANN VARIETY
    Lakshmibai, V.
    TRANSFORMATION GROUPS, 2016, 21 (02) : 519 - 530