Radio jet precession in M 81*

被引:15
|
作者
von Fellenberg, S. D. [1 ]
Janssen, M. [1 ]
Davelaar, J. [3 ,4 ,5 ]
Zajacek, M. [6 ]
Britzen, S. [1 ]
Falcke, H. [2 ]
Koerding, E. [2 ]
Ros, E. [1 ]
机构
[1] Max Planck Inst Radio Astron, Hugel 69, D-53121 Bonn, Germany
[2] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys IMAPP, Dept Astrophys, POB 9010, NL-6500 GL Nijmegen, Netherlands
[3] Columbia Univ, Dept Astron, 550 120th St, New York, NY 10027 USA
[4] Columbia Univ, Columbia Astrophys Lab, 550 120th St, New York, NY 10027 USA
[5] Flatiron Inst, Ctr Computat Astrophys, 162 Fifth Ave, New York, NY 10010 USA
[6] Masaryk Univ, Fac Sci, Dept Theoret Phys & Astrophys, Kotlarska 2, Brno 61137, Czech Republic
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
galaxies:; jets; X-RAY; BLACK-HOLE; RELATIVISTIC JETS; ACTIVE NUCLEUS; VLBI; ACCRETION; DISCOVERY; CORE; M81; MODELS;
D O I
10.1051/0004-6361/202245506
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We report four novel position angle measurements of the core region M 81* at 5 GHz and 8 GHz, which confirm the presence of sinusoidal jet precession in the M 81 jet region, as suggested by Marti-Vidal et al. (2011, A&A, 533, A111). The model makes three testable predictions regarding the evolution of the jet precession, which we test in our data with observations from 2017, 2018, and 2019. Our data confirm a precession period of similar to 7 yr on top of a small linear drift. We further show that two 8 GHz observation are consistent with a precession period of similar to 7 yr but show a different time lag with respect to the 5 GHz and 1.7 GHz observations. We do not find a periodic modulation of the light curve with the jet precession and therefore rule out a Doppler nature for the historic 1998-2002 flare. Our observations are consistent with either a binary black hole origin for the precession or the Lense-Thirring effect.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Jet precession in binary black holes
    Zulema Abraham
    Nature Astronomy, 2018, 2 : 443 - 444
  • [32] Probing AGN jet precession with LISA
    Steinle, Nathan
    Gerosa, Davide
    Krause, Martin G. H.
    PHYSICAL REVIEW D, 2024, 110 (12)
  • [33] EXPLORING ACCRETION AND DISK-JET CONNECTIONS IN THE LLAGN M81*
    Miller, J. M.
    Nowak, M.
    Markoff, S.
    Rupen, M. P.
    Maitra, D.
    ASTROPHYSICAL JOURNAL, 2010, 720 (02): : 1033 - 1037
  • [34] A stationary core with a one-sided jet in the center of M81
    Bietenholz, MF
    Bartel, N
    Rupen, MP
    ASTROPHYSICAL JOURNAL, 2000, 532 (02): : 895 - 908
  • [35] Jet precession in binary black holes
    Abraham, Zulema
    NATURE ASTRONOMY, 2018, 2 (06): : 443 - 444
  • [36] CLEAN imaging systematics of M87 radio jet
    Pashchenko, I. N.
    Kravchenko, E., V
    Nokhrina, E. E.
    Nikonov, A. S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 523 (01) : 1247 - 1267
  • [37] THE GLOBAL SPIRAL STRUCTURE OF M81 - RADIO-CONTINUUM MAPS
    BASH, FN
    KAUFMAN, M
    ASTROPHYSICAL JOURNAL, 1986, 310 (02): : 621 - &
  • [38] Is the M81 Fast Radio Burst Host Globular Cluster Special?
    Dage, Kristen C.
    Bahramian, Arash
    James, Clancy W.
    Kundu, Arunav
    Rhode, Katherine L.
    Strader, Jay
    Vesperini, Enrico
    Zepf, Stephen E.
    ASTROPHYSICAL JOURNAL LETTERS, 2023, 957 (02)
  • [39] A Markov chain Monte Carlo approach for measurement of jet precession in radio-loud active galactic nuclei
    Horton, Maya A.
    Hardcastle, Martin J.
    Read, Shaun C.
    Krause, Martin G. H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 493 (03) : 3911 - 3919
  • [40] XMM-Newton and Chandra observations of Abell 2626:: Interacting radio jets and cooling core with jet precession?
    Wong, Ka-Wah
    Sarazin, Craig L.
    Blanton, Elizabeth L.
    Reiprich, Thomas H.
    ASTROPHYSICAL JOURNAL, 2008, 682 (01): : 155 - 174