Experimental and Numerical Study of the Influence of Pre-Existing Impact Damage on the Low-Velocity Impact Response of CFRP Panels

被引:7
|
作者
Rezasefat, Mohammad [1 ]
Beligni, Alessio [1 ]
Sbarufatti, Claudio [1 ]
Amico, Sandro Campos [2 ]
Manes, Andrea [1 ]
机构
[1] Politecn Milan, Dipartimento Meccan, Via Masa 1, I-20156 Milan, Italy
[2] Fed Univ Rio Grande, PPGE3M, BR-91501970 Porto Alegre, Brazil
关键词
CFRP; Puck failure criterion; low-velocity impact; pre-existing damage; numerical simulation; DYNAMIC PROGRESSIVE FAILURE; FINITE-ELEMENT-ANALYSIS; COMPOSITES; BEHAVIOR; GLASS; ACCUMULATION; SIMULATION; EVOLUTION; THICKNESS; STRENGTH;
D O I
10.3390/ma16030914
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents an experimental and numerical investigation on the influence of pre-existing impact damage on the low-velocity impact response of Carbon Fiber Reinforced Polymer (CFRP). A continuum damage mechanics-based material model was developed by defining a user-defined material model in Abaqus/Explicit. The model employed the action plane strength of Puck for the damage initiation criterion together with a strain-based progressive damage model. Initial finite element simulations at the single-element level demonstrated the validity and capability of the damage model. More complex models were used to simulate tensile specimens, coupon specimens, and skin panels subjected to low-velocity impacts, being validated against experimental data at each stage. The effect of non-central impact location showed higher impact peak forces and bigger damage areas for impacts closer to panel boundaries. The presence of pre-existing damage close to the impact region leading to interfering delamination areas produced severe changes in the mechanical response, lowering the impact resistance on the panel for the second impact, while for non-interfering impacts, the results of the second impact were similar to the impact of a pristine specimen.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Experimental and Numerical Study of Composite Honeycomb Sandwich Structures Under Low-Velocity Impact
    Deng, Yunfei
    Hu, Xiaoyu
    Niu, Yijie
    Zheng, Yimei
    Wei, Gang
    APPLIED COMPOSITE MATERIALS, 2024, 31 (02) : 535 - 559
  • [42] Response of CFRP/AAC Sandwich Structures under Low-Velocity Impact
    Mousa, Mohammed A.
    Uddin, Nasim
    ACI MATERIALS JOURNAL, 2014, 111 (01) : 99 - 109
  • [43] An Experimental and Numerical Investigation on the Low-Velocity Impact Response of Nanoreinforced Polypropylene Core Sandwich Structures
    Tofighi, M. Bagheri
    Biglari, H.
    Shokrieh, M. M.
    MECHANICS OF COMPOSITE MATERIALS, 2022, 58 (02) : 209 - 226
  • [44] On low-velocity impact response of foam-core sandwich panels
    Huo, Xintao
    Liu, Hao
    Luo, Quantian
    Sun, Guangyong
    Li, Qing
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 181
  • [45] Low-velocity impact damage characteristics of flax/glass epoxy hybrid laminates on the influence of different temperatures: Experimental and numerical analysis
    Ahamed, Muneer Ahmed Musthaq
    Dhakal, Hom Nath
    Zhang, Zhongyi
    Barouni, Antigoni
    Pillai, John Regan
    Babaa, Saleh Elkelani
    COMPOSITE STRUCTURES, 2025, 353
  • [46] Experimental Investigation of the Effect of Core Structures on Low-Velocity Impact Response of PEEK Sandwich Panels Manufactured by FDM
    Wen, Zhou
    Li, Ming
    He, Li
    Xue, Meigui
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 34 (6) : 5031 - 5041
  • [47] Low-velocity ice impact response and damage phenomena on steel and CFRP sandwich composite
    Banik, Arnob
    Zhang, Chao
    Khan, M. H.
    Wilson, Matt
    Tan, K. T.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2022, 162
  • [48] Experimental and numerical investigation of RC column strengthening with CFRP strips subjected to low-velocity impact load
    Mercimek, Omer
    Anil, Ozgur
    Ghoroubi, Rahim
    Sakin, Shaimaa
    Yilmaz, Tolga
    STRUCTURAL ENGINEERING AND MECHANICS, 2021, 79 (06) : 749 - 765
  • [49] Low-velocity impact response of thermoplastic composite sandwich panels with the intersected corrugated core
    Pan, Xin
    Chen, Liming
    Deng, Jianqiang
    Zhao, Wanqi
    Jin, Shuai
    Du, Bing
    Chen, Yong
    Li, Weiguo
    Liu, Tao
    COMPOSITE STRUCTURES, 2023, 324
  • [50] Low-velocity impact performance and damage mechanisms of all-CFRP honeycomb sandwich shell
    Li, Zhibin
    Wang, Yan
    Xiong, Jian
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2025, 199