Lower bounds on par with upper bounds for few-electron atomic energies

被引:7
|
作者
Ronto, Miklos [1 ]
Jeszenszki, Peter [2 ]
Matyus, Edit [2 ]
Pollak, Eli [1 ]
机构
[1] Weizmann Inst Sci, Chem & Biol Phys Dept, IL-76100 Rehovot, Israel
[2] Eotvos Lorand Univ, ELTE, Inst Chem, Pazmany Peter Setany 1-A, H-1117 Budapest, Hungary
基金
欧洲研究理事会;
关键词
BAZLEYS SPECIAL CHOICE; MOLECULAR-PROPERTIES; PERTURBATION-THEORY; OSCILLATOR-STRENGTHS; GROUND-STATE; EIGENVALUES; TEMPLE; EQUATION; POLARIZABILITIES; OPTIMIZATION;
D O I
10.1103/PhysRevA.107.012204
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The development of computational resources has made it possible to determine upper bounds for atomic and molecular energies with high precision. Yet, error bounds to the computed energies have been available only as estimates. In this paper, the Pollak-Martinazzo lower-bound theory, in conjunction with correlated Gaussian basis sets, is elaborated and implemented to provide subparts-per-million convergence of the ground and excited-state energies for the He, Li, and Be atoms. The quality of the lower bounds is comparable to that of the upper bounds obtained from the Ritz method. These results exemplify the power of lower bounds to provide tight estimates of atomic energies.
引用
收藏
页数:10
相关论文
共 32 条