MOF-derived Co3O4 hierarchical porous structure for enhanced acetone sensing performance with high sensitivity and low detection limit

被引:31
作者
Guo, Rong [1 ]
Hou, Xinghui [1 ]
Shi, Caixin [1 ]
Zhang, Wenpu [1 ]
Zhou, Ying [1 ]
机构
[1] Zhengzhou Univ, Sch Mat Sci & Engn, 100 Sci Rd, Zhengzhou 450001, Peoples R China
基金
中国博士后科学基金;
关键词
MOF; Solvothermal method; Acetone sensing; Sensing mechanism; SELECTIVE DETECTION; ASSISTED SYNTHESIS; MESOPOROUS CO3O4; GAS SENSOR; NANOPARTICLES; FRAMEWORKS; NANOSHEETS; CATALYST;
D O I
10.1016/j.snb.2022.132973
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Metal organic frameworks (MOFs) with unique interior structure play a significant role in the field of gas-sensing. In this research, Co3O4-x hierarchical porous structure is successfully prepared by the solvothermal method and subsequent heat treatment using MOF as a sacrificial template. The effect of cobalt sources with different pro-portions of cobalt nitrate and cobalt chloride on the morphology, structure and gas-sensing of as-prepared Co3O4- x (x = 0, 1, 2, 3) samples is characterized and investigated in details by various techniques of XRD, Raman, SEM, TEM, BET and XPS. The findings demonstrate that the typical Co3O4-2 sensor exhibits a significantly higher response (27.6) than Co3O4-0 (6.1) to 50 ppm acetone at 140 degrees C. Furthermore, Co3O4-2 sensor exhibits fairly low detection limit of 0.1 ppm, superior selectivity, repeatability, and long-term stability. The optimized acetone -sensing capability of the as-obtained Co3O4-x samples may be ascribed to the hierarchical porous structure composed of the adhered nanoparticles due to the slow dissolution of CoCl2.6H2O, which is beneficial to increasing electron transport channels, thus improving gas sensitivity. The work provides a new idea for the preparation of respiratory monitoring materials for diabetic patients.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Synergetic enhancement effect of MOF-derived porous ZnO/ Co3O4 cage Z-scheme heterostructure for high-performance photodegradation
    Wang, Zerong
    Yin, Huimin
    Guo, Yingli
    Gao, Yongtao
    Liu, Junhui
    Han, Junhe
    Huang, Mingju
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1005
  • [42] Metal-Organic Frameworks-Derived Hierarchical Co3O4 Structures as Efficient Sensing Materials for Acetone Detection
    Zhang, Rui
    Zhou, Tingting
    Wang, Lili
    Zhang, Tong
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (11) : 9765 - 9773
  • [43] Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas
    Deng, Jianan
    Zhang, Rui
    Wang, Lili
    Lou, Zheng
    Zhang, Tong
    SENSORS AND ACTUATORS B-CHEMICAL, 2015, 209 : 449 - 455
  • [44] MOF Derived High Surface Area Enabled Porous Co3O4 Nanoparticles for Supercapacitors
    Saraf, Mohit
    Rajak, Richa
    Mobin, Shaikh M.
    CHEMISTRYSELECT, 2019, 4 (27): : 8142 - 8149
  • [45] Porous rod-shaped Co3O4 derived from Co-MOF-74 as high-performance anode materials for lithium ion batteries
    Chen, Jinxi
    Mu, Xixi
    Du, Mengjuan
    Lou, Yongbing
    INORGANIC CHEMISTRY COMMUNICATIONS, 2017, 84 : 241 - 245
  • [46] Unlocking low-concentration NH3 gas sensing: An innovative MOF-derived In2O3/Co3O4 nanocomposite approach
    Begi, Amensisa Negasa
    Hussain, Shahid
    Liaqat, Muhammad Javed
    Alsaiari, Norah Salem
    Ouladsmane, Mohamed
    Qiao, Guanjun
    Liu, Guiwu
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 181
  • [47] MOF-derived ceria-zirconia supported Co3O4 catalysts with enhanced activity in CO2 methanation
    Jampaiah, Deshetti
    Damma, Devaiah
    Chalkidis, Anastasios
    Venkataswamy, Perala
    Bhargava, Suresh K.
    Reddy, Benjaram M.
    CATALYSIS TODAY, 2020, 356 : 519 - 526
  • [48] MOF-derived Co3O4/NiCo2O4 double-shelled nanocages with excellent gas sensing properties
    Qu, Fengdong
    Jiang, Huifang
    Yang, Minghui
    MATERIALS LETTERS, 2017, 190 : 75 - 78
  • [49] Facile synthesis of bamboo raft-like Co3O4 with enhanced acetone gas sensing performances
    Wang, Shuangming
    Cao, Jing
    Cui, Wen
    Fan, Longlong
    Li, Xifei
    Li, Dejun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 758 : 45 - 53
  • [50] Pore engineering of Co3O4 nanowire arrays by MOF-assisted construction for enhanced acetone sensing performances
    Xu, Keng
    Lai, Chun
    Yang, Yanxing
    Zhou, Hang
    Zhou, Chengwu
    Yang, Yong
    Yu, Ting
    Yuan, Cailei
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 329