One-step constructed oxygen vacancies and Fe-doping to improve the electrochemical performance of Li-rich Mn-based cathode

被引:11
|
作者
Lu, Quan [1 ]
Wang, Yuezhen [1 ]
Yu, Kangzhe [1 ]
Zhao, Guiquan [1 ]
Cheng, Yan [1 ]
Yu, Zhaozhe [1 ,2 ]
机构
[1] Guilin Univ Elect Technol, Guangxi Key Lab Mfg Syst & Adv Mfg Technol, Guilin 541004, Peoples R China
[2] Guilin Univ Elect Technol, Engn Res Ctr Elect Informat Mat & Devices, Minist Educ, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
One-step synthesis strategy; Layered Li -rich oxide; Fe doping; Oxygen vacancies; Cycle stability; HIGH-CAPACITY; OXIDE; LI2MNO3; REDOX;
D O I
10.1016/j.jallcom.2022.168426
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Layered Li-rich (LLR) oxide electrodes are expected to be strong contenders for next-generation lithium -ion battery materials. However, irreversible anionic redox reactions during cycling lead to oxygen loss and capacity and voltage fading. Here, One-step synthesis strategy with Fe(NH4)2 center dot(SO4)2 has been proposed to achieve Fe-ion replacement and induce the generation of oxygen vacancies. Oxygen va-cancies can inhibit the irreversible O release and alleviate the corrosion of the surface and interior of the material by electrolysis. The doping of Fe ions can further stabilize the structure and improve the cycle stability of the material. Owing to this "one stone two birds" modification strategy, the modified ma-terials exhibit significantly reduced interfacial impedance and enhanced cycling stability. Therefore, compared 183.9 mAh g-1 and 69.78% for the original materials, the discharge-specific capacities of 223.1 mAh g-1 at 1 C (1 C = 250 mA g-1) with 81.8% capacity retentions after 300 cycles for the modified materials. Furthermore, the voltage decay is significantly suppressed to 0.002 V/cycle. This work provides a novel idea for manipulating structural stability to enhance the electrochemical performance of Li-rich materials. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Boosting the electrochemical performance of Li-rich Mn-based cathode materials via oxygen vacancy and spinel phase integration
    Yu, Wenhua
    Zhao, Liuyang
    Wang, Yanyan
    Yang, Chengyu
    Wang, Jie
    Huang, Hao
    Wu, Aimin
    Dong, Xufeng
    Cao, Guozhong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 648 : 820 - 833
  • [2] One-step construction of oxygen vacancies and coating to improve lithium storage performance of Li-rich layered oxides
    Wang, Wanchao
    Cheng, Wenhua
    Huang, Yudai
    Wang, Yadong
    Wei, Yanbin
    Liu, Qingcui
    APPLIED SURFACE SCIENCE, 2022, 605
  • [3] Comparative impact of surface and bulk fluoride anion doping on the electrochemical performance of co-free Li-rich Mn-based layered cathodes
    Li, Wenbo
    Dong, Jinyang
    Zhao, Yong
    Zhao, Jiayu
    Wang, Haoyu
    Li, Ning
    Lu, Yun
    Hao, Jianan
    Wu, Yujia
    Fang, Youyou
    Li, Yali
    Qi, Qiongqiong
    Su, Yuefeng
    Wu, Feng
    Chen, Lai
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 675 : 251 - 262
  • [4] Oxygen vacancy in Li-rich Mn-based cathode materials: origination, influence, regulation and characterization
    Liu, Xinrui
    Cheng, Jiaoyang
    Guan, Yunlong
    Huang, Songtao
    Lian, Fang
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (17) : 3434 - 3454
  • [5] Constructing a robust Li-rich Mn-based oxide cathode with oxygen vacancies and strong B-O bonds by BN treatment
    Hu, Kang-Hui
    Zhu, Chao-Qiong
    Zheng, Bao-Ping
    Qiu, Lang
    Wan, Fang
    Song, Yang
    Zhong, Ben-He
    Wu, Zhen-Guo
    Guo, Xiao-Dong
    CHEMICAL ENGINEERING JOURNAL, 2023, 473
  • [6] Achieving Superior Electrochemical Performance of Li-Rich Cathode Materials with a Uniform Li4Mn5O12@PDA-Li2SO4 Coating Layer by a One-Step Approach
    Liang, Zhanshuo
    Wang, Cuifeng
    Li, Guohua
    Zhuo, Haoxiang
    Guo, Lihao
    Liu, Haolin
    Jin, Zhihao
    Ren, Zhimin
    Wang, Jiantao
    ACS APPLIED ENERGY MATERIALS, 2025, : 4166 - 4175
  • [7] Hybrid heterojunction containing rich oxygen vacancies for suppressing lattice oxygen release of Li-rich Mn-based layered oxides cathodes
    Chen, Huai
    Si, Hanjie
    Ma, Jun
    Geng, Shuo
    Liu, Fei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 691
  • [8] Regulating the Unhybridized O 2p Orbitals of High-Performance Li-Rich Mn-Based Layered Oxide Cathode by Gd-Doping Induced Bulk Oxygen Vacancies
    Xu, Jia
    Wan, Jing
    Zhang, Wen
    Li, Yuyu
    Cheng, Fangyuan
    Cheng, Zexiao
    Xu, Yue
    Sun, Shixiong
    Li, Qing
    Fang, Chun
    Han, Jiantao
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (18)
  • [9] Li-Rich Mn-Based Cathode Materials for Li-Ion Batteries: Progress and Perspective
    Guo, Weibin
    Weng, Zhangzhao
    Zhou, Chongyang
    Han, Min
    Shi, Naien
    Xie, Qingshui
    Peng, Dong-Liang
    INORGANICS, 2024, 12 (01)
  • [10] Surface modulation induced oxygen vacancies/stacking faults and spinel-carbon composite coatings toward high-performance Li-rich Mn-based cathode
    Kou, Pengzu
    Zhang, Zhigui
    Dong, Zhaoyang
    Zheng, Runguo
    Song, Zhishuang
    Wang, Zhiyuan
    Sun, Hongyu
    Liu, Yanguo
    APPLIED SURFACE SCIENCE, 2025, 679