Graph Convolutional Neural Network for Intelligent Fault Diagnosis of Machines via Knowledge Graph

被引:10
|
作者
Mao, Zehui [1 ]
Wang, Huan [1 ]
Jiang, Bin [1 ]
Xu, Juan [2 ]
Guo, Huifeng [3 ,4 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 210016, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 210016, Peoples R China
[3] State Key Lab Mobile Network & Mobile Multimedia T, Shenzhen 518000, Peoples R China
[4] ZTE Corp, Shenzhen, Peoples R China
关键词
Fault diagnosis; Maintenance engineering; Knowledge graphs; Task analysis; Knowledge engineering; Sensitivity; Convolutional neural networks; graph neural networks; industrial machines; knowledge graph (KG);
D O I
10.1109/TII.2024.3367010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Considering the challenge of deep mining of root causes in machine failures, a knowledge aggregation fault diagnosis (KAFD) model is proposed, in which the graph convolutional network (GCN) GraphSAGE is improved and introduced into the knowledge graph (KG)-based fault diagnosis. Historical maintenance data of machines is used to construct a fault phenomenon-FBG, which is then combined with the fault diagnosis knowledge graph (FDKG) to form a collaborative FDKG. A single-layer knowledge aggregation network (KAN) that incorporates sensitivity factors and configures different types of GCN aggregators is constructed in the proposed KAFD. Based on deep neighbor aggregation operations on collaborative FDKG, KAFD obtained by stacking multiple KANs, can capture the higher order structural information and semantic information, which results in the multihop reasoning, improvement of the rationality and diversity of fault cause tracing. The KAFD is experimentally validated through two fault diagnosis datasets, which are constructed by the maintenance data of an industrial enterprise, and the results demonstrate the excellent performance.
引用
收藏
页码:7862 / 7870
页数:9
相关论文
共 50 条
  • [21] Causal Disentangled Graph Neural Network for Fault Diagnosis of Complex Industrial Process
    Liu, Ruonan
    Zhang, Quanhu
    Lin, Di
    Zhang, Weidong
    Ding, Steven X.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (01) : 386 - 395
  • [22] A graph neural network based fault diagnosis strategy for power communication networks
    Wan, Ziyi
    Lin, Limei
    Huang, Yanze
    Wang, Xiaoding
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2024, 47 (03) : 273 - 282
  • [23] Causal intervention graph neural network for fault diagnosis of complex industrial processes
    Liu, Ruonan
    Zhang, Quanhu
    Lin, Di
    Zhang, Weidong
    Ding, Steven X.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 251
  • [24] Weighted Feature Fusion of Convolutional Neural Network and Graph Convolutional Network for Mechanical Fault Diagnosis under Time-varying Speeds
    Yu, Yue
    Karimi, Hamid Reza
    Liu, Caiyi
    IFAC PAPERSONLINE, 2024, 58 (04): : 729 - 733
  • [25] Domain Generalization Combining Covariance Loss With Graph Convolutional Networks for Intelligent Fault Diagnosis of Rolling Bearings
    Song, Yan
    Li, Yibin
    Jia, Lei
    Zhang, Yu
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (12) : 13842 - 13852
  • [26] Task-Generalization-Based Graph Convolutional Network for Fault Diagnosis of Rod-Fastened Rotor System
    Zhao, Zhiqian
    Zhao, Runchao
    Xu, Yeyin
    Jiao, Yinghou
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (03) : 4616 - 4626
  • [27] Rotating machinery fault diagnosis based on feature extraction via an unsupervised graph neural network
    Jing Feng
    Shouyang Bao
    Xiaobin Xu
    Zhenjie Zhang
    Pingzhi Hou
    Felix Steyskal
    Schahram Dustdar
    Applied Intelligence, 2023, 53 : 21211 - 21226
  • [28] Rotating machinery fault diagnosis based on feature extraction via an unsupervised graph neural network
    Feng, Jing
    Bao, Shouyang
    Xu, Xiaobin
    Zhang, Zhenjie
    Hou, Pingzhi
    Steyskal, Felix
    Dustdar, Schahram
    APPLIED INTELLIGENCE, 2023, 53 (18) : 21211 - 21226
  • [29] Intelligent fault diagnosis of steel production line based on knowledge graph recommendation
    Zhu, Yan
    Wang, Jian
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2024, 41 (09): : 1548 - 1558
  • [30] Gradient-Based Interpretable Graph Convolutional Network for Bearing Fault Diagnosis
    Wen, Kairu
    Huang, Ruyi
    Li, Dongpeng
    Chen, Zhuyun
    Li, Weihua
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,