Using deep learning to quantify neuronal activation from single-cell and spatial transcriptomic data

被引:2
|
作者
Bahl, Ethan [1 ,2 ]
Chatterjee, Snehajyoti [3 ,4 ]
Mukherjee, Utsav [3 ,4 ,5 ]
Elsadany, Muhammad [1 ,2 ]
Vanrobaeys, Yann [2 ,3 ]
Lin, Li-Chun [3 ,4 ]
Mcdonough, Miriam [4 ,6 ]
Resch, Jon [4 ]
Giese, K. Peter [7 ]
Abel, Ted [3 ,4 ]
Michaelson, Jacob J. [1 ,3 ,8 ,9 ]
机构
[1] Univ Iowa, Dept Psychiat, Iowa City, IA 52242 USA
[2] Univ Iowa, Interdisciplinary Grad Program Genet, Iowa City, IA USA
[3] Univ Iowa, Iowa Neurosci Inst, Iowa City, IA 52242 USA
[4] Univ Iowa, Dept Neurosci & Pharmacol, Iowa City, IA USA
[5] Univ Iowa, Interdisciplinary Grad Program Neurosci, Iowa City, IA USA
[6] Univ Iowa, Interdisciplinary Grad Program Mol Med, Iowa City, IA USA
[7] Kings Coll London, Dept Basic & Clin Neurosci, London, England
[8] Univ Iowa, Dept Biomed Engn, Iowa City, IA 52242 USA
[9] Univ Iowa, Dept Commun Sci & Disorders, Iowa City, IA 52242 USA
关键词
ANTERIOR-CHAMBER; LIVER; HEPATOCYTES; DYNAMICS; BIOLOGY;
D O I
10.1038/s41467-023-44503-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neuronal activity-dependent transcription directs molecular processes that regulate synaptic plasticity, brain circuit development, behavioral adaptation, and long-term memory. Single cell RNA-sequencing technologies (scRNAseq) are rapidly developing and allow for the interrogation of activity-dependent transcription at cellular resolution. Here, we present NEUROeSTIMator, a deep learning model that integrates transcriptomic signals to estimate neuronal activation in a way that we demonstrate is associated with Patch-seq electrophysiological features and that is robust against differences in species, cell type, and brain region. We demonstrate this method's ability to accurately detect neuronal activity in previously published studies of single cell activity-induced gene expression. Further, we applied our model in a spatial transcriptomic study to identify unique patterns of learning-induced activity across different brain regions in male mice. Altogether, our findings establish NEUROeSTIMator as a powerful and broadly applicable tool for measuring neuronal activation, whether as a critical covariate or a primary readout of interest. Neuronal activity is associated with transcriptional changes. Here, the authors present a deep learning model that integrates single cell transcriptomic signals to estimate neuronal activation.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Using deep learning to quantify neuronal activation from single-cell and spatial transcriptomic data
    Ethan Bahl
    Snehajyoti Chatterjee
    Utsav Mukherjee
    Muhammad Elsadany
    Yann Vanrobaeys
    Li-Chun Lin
    Miriam McDonough
    Jon Resch
    K. Peter Giese
    Ted Abel
    Jacob J. Michaelson
    Nature Communications, 15
  • [2] Semi-Supervised Deep Learning for Cell Type Identification From Single-Cell Transcriptomic Data
    Dong, Xishuang
    Chowdhury, Shanta
    Victor, Uboho
    Li, Xiangfang
    Qian, Lijun
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (02) : 1492 - 1505
  • [3] CIRI-Deep Enables Single-Cell and Spatial Transcriptomic Analysis of Circular RNAs with Deep Learning
    Zhou, Zihan
    Zhang, Jinyang
    Zheng, Xin
    Pan, Zhicheng
    Zhao, Fangqing
    Gao, Yuan
    ADVANCED SCIENCE, 2024, 11 (14)
  • [4] A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data
    Zhao, Mengyuan
    He, Wenying
    Tang, Jijun
    Zou, Quan
    Guo, Fei
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [5] WebAtlas pipeline for integrated single-cell and spatial transcriptomic data
    Li, Tong
    Horsfall, David
    Basurto-Lozada, Daniela
    Roberts, Kenny
    Prete, Martin
    Lawrence, John E. G.
    He, Peng
    Tuck, Elisabeth
    Moore, Josh
    Yoldas, Aybuke Kupcu
    Babalola, Kolawole
    Hartley, Matthew
    Ghazanfar, Shila
    Teichmann, Sarah A.
    Haniffa, Muzlifah
    Bayraktar, Omer Ali
    NATURE METHODS, 2025, 22 (01) : 3 - 5
  • [6] Deep learning in single-cell and spatial transcriptomics data analysis: advances and challenges from a data science perspective
    Ge, Shuang
    Sun, Shuqing
    Xu, Huan
    Cheng, Qiang
    Ren, Zhixiang
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (02)
  • [7] Panpipes: a pipeline for multiomic single-cell and spatial transcriptomic data analysis
    Curion, Fabiola
    Rich-Griffin, Charlotte
    Agarwal, Devika
    Ouologuem, Sarah
    Rue-Albrecht, Kevin
    May, Lilly
    Garcia, Giulia E. L.
    Heumos, Lukas
    Thomas, Tom
    Lason, Wojciech
    Sims, David
    Theis, Fabian J.
    Dendrou, Calliope A.
    GENOME BIOLOGY, 2024, 25 (01):
  • [8] Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis
    T. Lohoff
    S. Ghazanfar
    A. Missarova
    N. Koulena
    N. Pierson
    J. A. Griffiths
    E. S. Bardot
    C.-H. L. Eng
    R. C. V. Tyser
    R. Argelaguet
    C. Guibentif
    S. Srinivas
    J. Briscoe
    B. D. Simons
    A.-K. Hadjantonakis
    B. Göttgens
    W. Reik
    J. Nichols
    L. Cai
    J. C. Marioni
    Nature Biotechnology, 2022, 40 : 74 - 85
  • [9] Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis
    Lohoff, T.
    Ghazanfar, S.
    Missarova, A.
    Koulena, N.
    Pierson, N.
    Griffiths, J. A.
    Bardot, E. S.
    Eng, C. -H. L.
    Tyser, R. C. V.
    Argelaguet, R.
    Guibentif, C.
    Srinivas, S.
    Briscoe, J.
    Simons, B. D.
    Hadjantonakis, A. -K.
    Gottgens, B.
    Reik, W.
    Nichols, J.
    Cai, L.
    Marioni, J. C.
    NATURE BIOTECHNOLOGY, 2022, 40 (01) : 74 - +
  • [10] Deciphering the Spatial Modular Patterns of Tissues by Integrating Spatial and Single-Cell Transcriptomic Data
    Shan, Xu
    Chen, Jinyu
    Dong, Kangning
    Zhou, Wei
    Zhang, Shihua
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (07) : 650 - 663