Transcriptome Analysis Reveals Drought-Responsive Pathways and Key Genes of Two Oat (Avena sativa) Varieties

被引:2
|
作者
Xu, Weiwei [1 ,2 ]
Guo, Laichun [2 ,3 ]
Wang, Chunlong [2 ]
Wei, Liming [2 ]
Wang, Qiang [2 ,3 ]
Ren, Qinyong [1 ,2 ]
Yang, Xiwu [1 ,2 ]
Zhan, Chao [2 ]
Liang, Xiaotian [1 ,2 ]
Wang, Junying [4 ]
Ren, Changzhong [1 ,2 ]
机构
[1] Jilin Agr Univ, Agron Coll, Changchun 130118, Peoples R China
[2] Baicheng Acad Agr Sci, Natl Oat Improvement Ctr, Baicheng 137000, Peoples R China
[3] Chengdu Univ, Coll Food & Biol Engn, Chengdu 610106, Peoples R China
[4] Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing 100081, Peoples R China
来源
PLANTS-BASEL | 2024年 / 13卷 / 02期
关键词
oat; soil drought stress; leaf ultrastructure; cell wall; CUTICULAR WAXES; ARABIDOPSIS; STRESS; BIOSYNTHESIS; EXPRESSION; POLYSACCHARIDES; ACCUMULATION; METABOLISM; RESISTANCE; TOLERANCE;
D O I
10.3390/plants13020177
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To cope with the yield loss caused by drought stress, new oat varieties with greater drought tolerance need to be selected. In this study, two oat varieties with different drought tolerances were selected for analysis of their phenotypes and physiological indices under moderate and severe soil drought stress. The results revealed significant differences in the degree of wilting, leaf relative water content (RWC), and SOD and CAT activity between the two oat genotypes under severe soil drought stress; moreover, the drought-tolerant variety exhibited a significant increase in the number of stomata and wax crystals on the surface of both the leaf and guard cells; additionally, the morphology of the guard cells was normal, and there was no significant disruption of the grana lamella membrane or the nuclear envelope. Furthermore, transcriptome analysis revealed that the expression of genes related to the biosynthesis of waxes and cell-wall components, as well as those of the WRKY family, significantly increased in the drought-tolerant variety. These findings suggest that several genes involved in the antioxidant pathway could improve drought tolerance in plants by regulating the increase/decrease in wax and cell-wall constituents and maintaining normal cellular water potential, as well as improving the ability of the antioxidant system to scavenge peroxides in oats.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Key Cannabis Salt-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Varieties
    Zhang, Jiangjiang
    Zhang, Cuiping
    Huang, Siqi
    Chang, Li
    Li, Jianjun
    Tang, Huijuan
    Dey, Susmita
    Biswas, Ashok
    Du, Dengxiang
    Li, Defang
    Zhao, Lining
    AGRONOMY-BASEL, 2021, 11 (11):
  • [42] Comparative Analysis of Drought-Responsive Transcriptome in Different Genotype Saccharum spontaneum L.
    Wang, Tian-Ju
    Wang, Xian-Hong
    Yang, Qing-Hui
    SUGAR TECH, 2020, 22 (03) : 411 - 427
  • [43] Analysis of Camellia oleifera transcriptome reveals key pathways and hub genes involved during different photoperiods
    Yan, Jindong
    He, Jiacheng
    Li, Jian'an
    Ren, Shuangshuang
    Wang, Ying
    Zhou, Junqin
    Tan, Xiaofeng
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [44] Comparative analysis of drought-responsive physiological and transcriptome in broomcorn millet (Panicum miliaceum L.) genotypes with contrasting drought tolerance
    Yuan, Yuhao
    Liu, Long
    Gao, Yongbin
    Yang, Qinghua
    Dong, Kongjun
    Liu, Tianpeng
    Feng, Baili
    INDUSTRIAL CROPS AND PRODUCTS, 2022, 177
  • [45] Comparative Transcriptome Analysis of Sophora japonica (L.) Roots Reveals Key Pathways and Genes in Response to PEG-Induced Drought Stress under Different Nitrogen Conditions
    Tian, Jing
    Pang, Yue
    Zhao, Zhong
    FORESTS, 2021, 12 (05):
  • [46] Identification of putative drought-responsive genes in rice using gene co-expression analysis
    Lv, Yanmei
    Xu, Lei
    Dossa, Komivi
    Zhou, Kun
    Zhu, Mingdong
    Xie, Hongjun
    Tang, Shanjun
    Yu, Yaying
    Guov, Xiayu
    Zhou, Bin
    BIOINFORMATION, 2019, 15 (07) : 480 - 487
  • [47] Elucidation of novel drought-responsive genes from tuber transcriptome of cassava under water deficit stress
    Koundinya, A. V. V.
    Muthusamy, Senthilkumar K.
    Ajeesh, B. R.
    Mohan, C.
    Sreekumar, J.
    Pulapet, Sowmya
    Markkandan, Kesavan
    Sheela, M. N.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2024, 169 : 255 - 267
  • [48] Genome-Wide Identification and Analysis of Drought-Responsive Genes and MicroRNAs in Tobacco
    Yin, Fuqiang
    Qin, Cheng
    Gao, Jian
    Liu, Ming
    Luo, Xirong
    Zhang, Wenyou
    Liu, Hongjun
    Liao, Xinhui
    Shen, Yaou
    Mao, Likai
    Zhang, Zhiming
    Lin, Haijian
    Luebberstedt, Thomas
    Pan, Guangtang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (03) : 5714 - 5740
  • [49] Proteomic analysis of salt-responsive proteins in oat roots (Avena sativa L.)
    Bai, Jianhui
    Liu, Jinghui
    Jiao, Weihong
    Sa, Rula
    Zhang, Na
    Jia, Ruizong
    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2016, 96 (11) : 3867 - 3875
  • [50] Transcriptome analysis of finger millet (Eleusine coracana (L.) Gaertn.) reveals unique drought responsive genes
    Parvathi, M. S.
    Nataraja, Karaba N.
    Reddy, Y. A. Nanja
    Naika, Mahantesha B. N.
    Gowda, M. V. Channabyre
    JOURNAL OF GENETICS, 2019, 98 (02)