Hidden Markov Model for Parkinson's Disease Patients Using Balance Control Data

被引:2
|
作者
Safi, Khaled [1 ]
Aly, Wael Hosny Fouad [2 ]
Kanj, Hassan [2 ]
Khalifa, Tarek [2 ]
Ghedira, Mouna [3 ]
Hutin, Emilie [3 ]
机构
[1] Jinan Univ, Comp Sci Dept, POB 818, Tripoli, Lebanon
[2] Amer Univ Middle East, Coll Engn & Technol, Egaila 54200, Kuwait
[3] Henri Mondor Univ Hosp, AP HP, Lab Anal & Restorat Movement ARM, F-94000 Creteil, France
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 01期
关键词
HMM; machine learning; Parkinson's disease; postural stability; stabilometric data;
D O I
10.3390/bioengineering11010088
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Understanding the behavior of the human postural system has become a very attractive topic for many researchers. This system plays a crucial role in maintaining balance during both stationary and moving states. Parkinson's disease (PD) is a prevalent degenerative movement disorder that significantly impacts human stability, leading to falls and injuries. This research introduces an innovative approach that utilizes a hidden Markov model (HMM) to distinguish healthy individuals and those with PD. Interestingly, this methodology employs raw data obtained from stabilometric signals without any preprocessing. The dataset used for this study comprises 60 subjects divided into healthy and PD patients. Impressively, the proposed method achieves an accuracy rate of up to 98% in effectively differentiating healthy subjects from those with PD.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] QUALITY CONTROL OF VOICE RECORDINGS IN REMOTE PARKINSON'S DISEASE MONITORING USING THE INFINITE HIDDEN MARKOV MODEL
    Poorjam, Amir Hossein
    Raykov, Yordan P.
    Badawy, Reham
    Jensen, Jesper Rindom
    Christensen, Mads Graesboll
    Little, Max A.
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 805 - 809
  • [2] Hidden Markov Model based stride segmentation on unsupervised free-living gait data in Parkinson’s disease patients
    Nils Roth
    Arne Küderle
    Martin Ullrich
    Till Gladow
    Franz Marxreiter
    Jochen Klucken
    Bjoern M. Eskofier
    Felix Kluge
    Journal of NeuroEngineering and Rehabilitation, 18
  • [3] Hidden Markov Model based stride segmentation on unsupervised free-living gait data in Parkinson's disease patients
    Roth, Nils
    Kuederle, Arne
    Ullrich, Martin
    Gladow, Till
    Marxreiter, Franz
    Klucken, Jochen
    Eskofier, Bjoern M.
    Kluge, Felix
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2021, 18 (01)
  • [4] EMD-Based Method for Supervised Classification of Parkinson's Disease Patients Using Balance Control Data
    Safi, Khaled
    Aly, Wael Hosny Fouad
    AlAkkoumi, Mouhammad
    Kanj, Hassan
    Ghedira, Mouna
    Hutin, Emilie
    BIOENGINEERING-BASEL, 2022, 9 (07):
  • [5] Parkinson's disease patients compensate for balance control asymmetry
    Boonstra, T. A.
    Schouten, A. C.
    van Vugt, J. P. P.
    Bloem, B. R.
    van der Kooij, H.
    JOURNAL OF NEUROPHYSIOLOGY, 2014, 112 (12) : 3227 - 3239
  • [6] Participation and perception of balance control in patients with Parkinson's disease
    Romero, S.
    Light, K.
    JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2008, 56 (04) : S110 - S110
  • [7] Disease surveillance using a hidden Markov model
    Rochelle E Watkins
    Serryn Eagleson
    Bert Veenendaal
    Graeme Wright
    Aileen J Plant
    BMC Medical Informatics and Decision Making, 9
  • [8] Disease surveillance using a hidden Markov model
    Watkins, Rochelle E.
    Eagleson, Serryn
    Veenendaal, Bert
    Wright, Graeme
    Plant, Aileen J.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2009, 9
  • [9] Effects of perceptive rehabilitation on balance control in patients with Parkinson's disease
    Paolucci, Teresa
    Morone, Giovanni
    Fusco, Augusto
    Giuliani, Marco
    Rosati, Elisa
    Zangrando, Federico
    Saraceni, Vincenzo Maria
    Paolucci, Stefano
    Iosa, Marco
    NEUROREHABILITATION, 2014, 34 (01) : 113 - 120
  • [10] A hidden Markov model for rainfall using breakpoint data
    Sansom, J
    JOURNAL OF CLIMATE, 1998, 11 (01) : 42 - 53