Design of nanostructure in solid electrolyte interphase for enhancing the mechanical durability of lithium metal anode by deep-learning approach

被引:5
作者
Chen, Shengjie [1 ]
Gong, Zhanpeng [1 ]
Zhao, Peiyu [1 ]
Zhang, Yanhua [1 ]
Cheng, Bo [1 ]
Hou, Jianhua [1 ]
Song, Jiangxuan [1 ]
Ding, Xiangdong [1 ]
Sun, Jun [1 ]
Shi, Jinwen [2 ]
Deng, Junkai [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] Xian Jiaotong Univ XJTU, Int Res Ctr Renewable Energy IRCRE, State Key Lab Multiphase Flow Power Engn MFPE, Xian 710049, Peoples R China
关键词
Lithium metal anode; Solid electrolyte interphase; Nanostructure; Mechanical failure; Convolutional neural network; BATTERY SYSTEMS; PERFORMANCE; LI;
D O I
10.1016/j.ensm.2023.103096
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal anode (LMA) encounters significant safety challenges due to the growth of Li dendrites. The solid electrolyte interphase (SEI) plays a crucial role in inhibiting dendrites growth. SEI shows a nanostructure con-sisting of embedded crystalline particles (CP), and the distribution of these CP strongly impacts the mechanical durability and thus Li dendrites growth. Therefore, establishing a correlation between the nanostructure of the SEI and its mechanical durability is essential to design a SEI with optimized security properties. Herein, we present a Convolutional Neural Network (CNN) that has been trained on a high-throughput Finite-Elements Method (FEM) dataset based on the experimentally observed Cryo-TEM image. The CNN model can accurately predict the mechanical failure time (FT) of SEI structures. Furthermore, we employ the Reverse Monte Carlo (RMC) method coupled with CNN model to explore the structures with longer FT, ultimately identifying an optimized structure with uniform arrangement CP. Additionally, Ablation-Classification Activate Map (Ablation -CAM) technique highlights the critical role of CP distribution in failure, as clustering CP can lead to nonuniform current density and uneven Li plating. This work provides design strategies and insights into the failure mech-anisms for SEI, offering a potential solution to address the safety concerns of LMA.
引用
收藏
页数:9
相关论文
共 44 条
[1]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[2]   Resolving Current-Dependent Regimes of Electroplating Mechanisms for Fast Charging Lithium Metal Anodes [J].
Boyle, David T. ;
Li, Yuzhang ;
Pei, Allen ;
Vila, Rafael A. ;
Zhang, Zewen ;
Sayavong, Philaphon ;
Kim, Mun Sek ;
Huang, William ;
Wang, Hongxia ;
Liu, Yunzhi ;
Xu, Rong ;
Sinclair, Robert ;
Qin, Jian ;
Bao, Zhenan ;
Cui, Yi .
NANO LETTERS, 2022, 22 (20) :8224-8232
[3]   Material structure-property linkages using three-dimensional convolutional neural networks [J].
Cecen, Ahmet ;
Dai, Hanjun ;
Yabansu, Yuksel C. ;
Kalidindi, Surya R. ;
Song, Le .
ACTA MATERIALIA, 2018, 146 :76-84
[4]   Grad-CAM plus plus : Generalized Gradient-based Visual Explanations for Deep Convolutional Networks [J].
Chattopadhay, Aditya ;
Sarkar, Anirban ;
Howlader, Prantik ;
Balasubramanian, Vineeth N. .
2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, :839-847
[5]   Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode [J].
Chen, Hao ;
Pei, Allen ;
Lin, Dingchang ;
Xie, Jin ;
Yang, Ankun ;
Xu, Jinwei ;
Lin, Kaixiang ;
Wang, Jiangyan ;
Wang, Hansen ;
Shi, Feifei ;
Boyle, David ;
Cui, Yi .
ADVANCED ENERGY MATERIALS, 2019, 9 (22)
[6]   Unveiling the Stable Nature of the Solid Electrolyte Interphase between Lithium Metal and LiPON via Cryogenic Electron Microscopy [J].
Cheng, Diyi ;
Wynn, Thomas A. ;
Wang, Xuefeng ;
Wang, Shen ;
Zhang, Minghao ;
Shimizu, Ryosuke ;
Bai, Shuang ;
Nguyen, Han ;
Fang, Chengcheng ;
Kim, Min-cheol ;
Li, Weikang ;
Lu, Bingyu ;
Kim, Suk Jun ;
Meng, Ying Shirley .
JOULE, 2020, 4 (11) :2484-2500
[7]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[8]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[9]  
Desai S, 2020, IEEE WINT CONF APPL, P972, DOI [10.1109/wacv45572.2020.9093360, 10.1109/WACV45572.2020.9093360]
[10]   Quantification of the Dynamic Interface Evolution in High-Efficiency Working Li-Metal Batteries [J].
Ding, Jun-Fan ;
Xu, Rui ;
Ma, Xia-Xia ;
Xiao, Ye ;
Yao, Yu-Xing ;
Yan, Chong ;
Huang, Jia-Qi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (13)