Effects of propellant species on the discharge characteristics of glow discharge hollow cathode

被引:1
|
作者
Han, Ao [1 ]
Meng, Tianhang [1 ]
Jia, Senyao [1 ]
Tong, Yinggang [2 ]
Ning, Zhongxi [1 ]
机构
[1] Harbin Inst Technol, Plasma Prop Lab, Harbin 150001, Peoples R China
[2] Beijing Inst Control Engn, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
Hollow cathode; Glow discharge; Ion-induced secondary electron emission; coefficient; Ion mobility; OPERATION;
D O I
10.1016/j.vacuum.2023.112867
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hollow cathodes are the key sources of electrons for the operation of space electric thrusters. Traditionally, hollow cathodes utilize heating elements to raise the temperature of low work function materials to produce electrons. To accommodate the development of small satellites, researchers around the world have developed alternative neutralizer technologies such as radio frequency neutralizers, electron cyclotron resonance neutralizers, and coiled tungsten filaments cathode neutralizers to simplify the cathodes design and operation. In this work, a lower current glow discharge hollow cathode (GDHC) is developed, which can generate a discharge current of 10-100 mA. By testing with xenon, krypton, and argon propellants, it is found that GDHC has lower discharge voltage and power consumption with argon propellant. Simulation analysis reveals that during argon propellant discharge, the secondary electron emission coefficient on the cathode surface is larger, the electron density in the cathode sheath area is higher, and the high mobility of argon ions increases the conductivity within the cathode sheath. In addition, there are low and high extraction modes for GDHC electron extraction, depending on whether the keeper electrode absorbs or emits electrons.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] The Deposition of Thin Metal Films in Low Temperature Plasma of Hollow Cathode Glow Discharge
    Bolotov, Maksym
    2020 IEEE 40TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2020, : 90 - 94
  • [32] The Regimes for Sustaining a Hollow-Cathode Glow Discharge with a Hot Filament Inside the Cavity
    N. V. Landl
    Yu. D. Korolev
    V. G. Geyman
    O. B. Frants
    I. A. Shemyakin
    V. S. Kasyanov
    I. V. Lopatin
    S. S. Kovalskii
    Russian Physics Journal, 2020, 62 : 2024 - 2032
  • [33] Effect of vacuum backpressure on discharge characteristics of hollow cathode
    宁中喜
    初彦峰
    刘晓宇
    李凡
    朱悉铭
    于达仁
    Plasma Science and Technology, 2019, (12) : 30 - 36
  • [34] Nebulization and analysis characteristics of a particle beam hollow cathode glow discharge atomic emission spectrometry system
    You, JZ
    Depalma, PA
    Marcus, RK
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 1996, 11 (07) : 483 - 490
  • [35] Operating characteristics of the hollow anode glow discharge ion source
    Abdelsalam, F. W.
    Helal, A. G.
    Abdelrahman, M. M.
    Soliman, B. A.
    VACUUM, 2009, 84 (03) : 405 - 409
  • [36] Reducing the Background Level of a Mass-Spectrometric Hollow Cathode Glow Discharge Ion Source
    G. G. Sikharulidze
    A. E. Lezhnev
    Journal of Analytical Chemistry, 2003, 58 : 862 - 869
  • [37] Reducing the background level of a mass-spectrometric hollow cathode glow discharge ion source
    Sikharulidze, GG
    Lezhnev, AE
    JOURNAL OF ANALYTICAL CHEMISTRY, 2003, 58 (09) : 862 - 869
  • [38] Nitriding of technical-purity titanium in hollow-cathode glow discharge
    Akhmadeev, YK
    Goncharenko, IM
    Ivanov, YF
    Koval, NN
    Schanin, PM
    TECHNICAL PHYSICS LETTERS, 2005, 31 (07) : 548 - 550
  • [39] Spatial Distribution of Electron Concentration in a DC Glow Discharge Supported by a Hollow Cathode
    A. V. Bernatskiy
    I. I. Draganov
    N. A. Dyatko
    I. V. Kochetov
    V. N. Ochkin
    Plasma Chemistry and Plasma Processing, 2024, 44 : 651 - 666
  • [40] Spatial Distribution of Electron Concentration in a DC Glow Discharge Supported by a Hollow Cathode
    Bernatskiy, A. V.
    Draganov, I. I.
    Dyatko, N. A.
    Kochetov, I. V.
    Ochkin, V. N.
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2024, 44 (01) : 651 - 666