Super-resolution reconstruction of structured illumination microscopy using deep-learning and sparse deconvolution

被引:4
作者
Song, Liangfeng [1 ,2 ,3 ,4 ]
Liu, Xin [2 ,3 ,4 ]
Xiong, Zihan [1 ,2 ,3 ,4 ]
Ahamed, Mostak [5 ]
An, Sha [1 ,2 ,3 ,4 ]
Zheng, Juanjuan [1 ,2 ,3 ,4 ]
Ma, Ying [1 ,2 ,3 ,4 ]
Gao, Peng [1 ,2 ,3 ,4 ]
机构
[1] Xidian Univ, Hangzhou Inst Technol, Hangzhou 311200, Peoples R China
[2] Xidian Univ, Sch Phys, Xian 710071, Peoples R China
[3] Minist Educ, Key Lab Optoelect Percept Complex Environm, Xian, Peoples R China
[4] Univ Shaanxi Prov, Engn Res Ctr Informat Nanomat, Xian 710071, Peoples R China
[5] Changan Univ, Dept Mech Engn, Xian 710064, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Structured illumination microscopy; Deep learning; Neural network; Super-resolution; Image reconstruction; FIELD FLUORESCENCE MICROSCOPY; RESOLUTION;
D O I
10.1016/j.optlaseng.2023.107968
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Structured illumination microscopy (SIM) is one of the essential super-resolution microscopic imaging tech-niques, featuring fast imaging speed, low exposure dose, and having no special requirements for fluorescent probes. In this paper, we propose a super-resolution SIM reconstruction approach, which integrates an end-to -end multi-scale neural network (entitled Scale Richardson-Lucy Network, SRLN). SRLN fits the SIM imaging process through Richardson-Lucy deconvolution incorporated in the neural network. After being trained with sufficient data pairs, among which the ground-truth images were refined with sparse deconvolution, the SRLN network can yield super-resolution images with a spatial resolution of similar to 70 nm from raw SIM intensity images. The feasibility and generalization capability of SRLN were experimentally demonstrated by reconstructing SR images for different biological structures, of which the raw images were acquired with different devices. The proposed network will be valuable for super-resolution imaging in the biology and medicine fields.
引用
收藏
页数:9
相关论文
共 42 条
[1]  
Abbe E., 1873, Arch. Mikrosk. Anat, V9, P413, DOI DOI 10.1007/BF02956173
[2]   Multicolor super-resolution imaging with photo-switchable fluorescent probes [J].
Bates, Mark ;
Huang, Bo ;
Dempsey, Graham T. ;
Zhuang, Xiaowei .
SCIENCE, 2007, 317 (5845) :1749-1753
[3]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[4]   Enhanced reconstruction of structured illumination microscopy on a polarized specimen [J].
Chen, Xingye ;
Zhanghao, Karl ;
Li, Meiqi ;
Qiao, Chang ;
Liu, Wenhui ;
Xi, Peng ;
Dai, Qionghai .
OPTICS EXPRESS, 2020, 28 (17) :25642-25654
[5]   Fast and Lightweight Network for Single Frame Structured Illumination Microscopy Super-Resolution [J].
Cheng, Xi ;
Li, Jun ;
Dai, Qiang ;
Fu, Zhenyong ;
Yang, Jian .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
[6]   ML-SIM: universal reconstruction of structured illumination microscopy images using transfer learning [J].
Christensen, Charles N. ;
Ward, Edward N. ;
Lu, Meng ;
Lio, Pietro ;
Kaminski, Clemens F. .
BIOMEDICAL OPTICS EXPRESS, 2021, 12 (05) :2720-2733
[7]   Rapid Image Reconstruction of Structured Illumination Microscopy Directly in the Spatial Domain [J].
Dan, Dan ;
Wang, Zhaojun ;
Zhou, Xing ;
Lei, Ming ;
Zhao, Tianyu ;
Qian, Jia ;
Yu, Xianghua ;
Yan, Shaohui ;
Min, Junwei ;
Bianco, Piero ;
Yao, Baoli .
IEEE PHOTONICS JOURNAL, 2021, 13 (01)
[8]   Parameter-free image resolution estimation based on decorrelation analysis [J].
Descloux, A. ;
Grussmayer, K. S. ;
Radenovic, A. .
NATURE METHODS, 2019, 16 (09) :918-+
[9]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[10]   Subvoxel light-sheet microscopy for high-resolution high-throughput volumetric imaging of large biomedical specimens [J].
Fei, Peng ;
Nie, Jun ;
Lee, Juhyun ;
Ding, Yichen ;
Li, Shuoran ;
Zhang, Hao ;
Hagiwara, Masaya ;
Yu, Tingting ;
Segura, Tatiana ;
Ho, Chih-Ming ;
Zhu, Dan ;
Hsiai, Tzung K. .
ADVANCED PHOTONICS, 2019, 1 (01)