Low-carbon Economic Operation Optimization of Integrated Energy System Considering Carbon Emission Sensing Measurement System and Demand Response: An Improved Northern Goshawk Optimization Algorithm

被引:0
|
作者
Li, Ling -ling [1 ,2 ]
Miao, Yan [1 ,2 ]
Lin, Cheng-Jian [3 ]
Qu, Linan [1 ,2 ]
Liu, Guanchen [4 ]
Yuan, Jianping [5 ]
机构
[1] Hebei Univ Technol, State Key Lab Reliabil & Intelligence Elect Equipm, Tianjin 300401, Peoples R China
[2] Hebei Univ Technol, Key Lab Electromagnet Field & Elect Apparat Reliab, Tianjin 300401, Peoples R China
[3] Natl Chin Yi Univ Technol, Dept Comp Sci & Informat Engn, Taichung 411, Taiwan
[4] Power China Huadong Engn Corp Ltd, Hangzhou 310000, Peoples R China
[5] Hangzhou Huachen Elect Power Control Co Ltd, Hangzhou 310014, Peoples R China
关键词
integrated electricity-heat energy system; improved northern goshawk algorithm; carbon emission sensing measurement system; demand response; STRATEGY;
D O I
10.18494/SAM4679
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The integrated energy system is a perfect way to realize the transformation of the traditional energy industry structure. To further explore the role of its load-side adjustable potential in carbon emission reduction, an optimal operation model of the integrated energy system considering the carbon emission sensing measurement system and demand response (DR) is proposed. First, the integrated electricity-heat energy system (IEHS) model framework is constructed in accordance with the coupling characteristics of electricity-heat-gas in the system. The carbon emission sensing measurement system is introduced on the energy supply side, and DR is considered on the user load side, including the DR model based on the price elasticity matrix and the replacement-based DR model considering the mutual conversion of electric and thermal energies on the energy use side. Second, the baseline method is used to allocate carbon emission quotas for the system free of charge, and the actual carbon emissions of gas turbines and gas boilers are considered. An IEHS objective function is established to minimize the sum of the energy purchase, carbon transaction, and operation and maintenance costs. Third, an improved northern goshawk optimization (INGO) algorithm is proposed to optimize the low-carbon operation of the IEHS model. Finally, the effectiveness and practicability of the proposed model and algorithm are verified using different scenarios and different algorithms. The results show that, considering the carbon emission sensing measurement system and DR, the total operation cost is reduced by 10.4% and the actual carbon emission is reduced by 6420.582 kg. Compared with those of the northern goshawk (NGO) algorithm, the total operation cost of the INGO algorithm is reduced by 9.4% and the actual carbon emission is reduced by 1164.253 kg, which realizes the coordinated operation of system economy and low carbon emission.
引用
收藏
页码:4417 / 4437
页数:21
相关论文
共 50 条
  • [21] Low-Carbon Economic Dispatch of Integrated Electricity-Gas Energy System Considering Carbon Capture, Utilization and Storage
    Liu, Xinghua
    Li, Xiang
    Tian, Jiaqiang
    Yang, Guoqing
    Wu, Huibao
    Ha, Rong
    Wang, Peng
    IEEE ACCESS, 2023, 11 : 25077 - 25089
  • [22] Low-carbon Planning of Power System Considering Carbon Emission Flow
    Zhao W.
    Xiong Z.
    Pan Y.
    Li F.
    Xu P.
    Lai X.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2023, 47 (09): : 23 - 33
  • [23] The Robust Optimization of Low-Carbon Economic Dispatching for Regional Integrated Energy Systems Considering Wind and Solar Uncertainty
    Zhang, Mingguang
    Wang, Bo
    Wei, Juan
    ELECTRONICS, 2024, 13 (17)
  • [24] Optimization Scheduling of Integrated Energy System Considering Demand Response and Coupling Degree
    Lv, Huacan
    Wang, Yong
    Dong, Xuetao
    Jiang, Fan
    Wang, Chengfu
    Zhang, Zhenwei
    2021 IEEE/IAS 57TH INDUSTRIAL AND COMMERCIAL POWER SYSTEMS TECHNICAL CONFERENCE (I&CPS), 2021,
  • [25] Low carbon economy scheduling of integrated energy system considering the mutual response of supply and demand
    Yi, Tao
    Ren, Weijia
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2024, 38
  • [26] Low carbon operation and evaluation methods for integrated energy system counting EVs with whole life cycle considering demand response
    Liu, Chao
    Fan, Yiwen
    Yu, Wanshui
    Liu, Yishi
    Li, Chenjia
    Chi, Yongning
    RENEWABLE ENERGY, 2024, 236
  • [27] Integrated energy system scheduling considering carbon trading price demand response
    Wang, Lunjie
    Luo, Lin
    Yu, Miao
    Cao, Yupeng
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 330 - 337
  • [28] Low-Carbon Economic Dispatch Considering Carbon Capture Unit and Demand Response Under Carbon Trading
    Zhou, Renjun
    Li, Yishu
    Sun, Jiagan
    Zhang, Hao
    Liu, Duli
    2016 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2016, : 1435 - 1439
  • [29] Operation optimization of regional integrated energy system considering demand response of cooling, heating and electricity flexible loads
    Hu, Fan
    Guo, Zihao
    Xiao, Kai
    Xiong, Wen
    Wang, Li
    Li, Yajun
    2021 POWER SYSTEM AND GREEN ENERGY CONFERENCE (PSGEC), 2021, : 309 - 315
  • [30] Low-carbon collaborative dual-layer optimization for energy station considering joint electricity and heat demand response
    Xu, Shaoshan
    Wu, Xingchen
    Shen, Jun
    Hua, Haochen
    FRONTIERS IN ENERGY, 2025, 19 (01) : 100 - 113