Power Minimization in Federated Learning with Over-the-air Aggregation and Receiver Beamforming

被引:0
|
作者
Kalarde, Faeze Moradi [1 ]
Liang, Ben [1 ]
Dong, Min [2 ]
Ahmed, Yahia A. Eldemerdash [3 ]
Cheng, Ho Ting [3 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] Ontario Tech Univ, Oshawa, ON, Canada
[3] Ericsson Canada, Ottawa, ON, Canada
来源
PROCEEDINGS OF THE INT'L ACM CONFERENCE ON MODELING, ANALYSIS AND SIMULATION OF WIRELESS AND MOBILE SYSTEMS, MSWIM 2023 | 2023年
基金
加拿大自然科学与工程研究理事会;
关键词
Federated Learning; Over-the-air Computation; Power Consumption; Multi-antenna Beamforming;
D O I
10.1145/3616388.3617534
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Combining over-the-air uplink transmission and multi-antenna beamforming can improve the efficiency of federated learning (FL). However, to mitigate the significant aggregation error due to communication noise and signal distortion, pre-processing of device signals and post-processing at the server are required. In this paper, we study the optimization of receiver beamforming and device transmit weights in over-the-air FL, to minimize the total transmit power in each communication round while guaranteeing the convergence of FL. We establish sufficient convergence conditions based on the analysis of gradient descent with error and formulate a power minimization problem. An alternating optimization approach is then employed to decompose the problem into tractable subproblems, and efficient solutions are developed for these subproblems. Our proposed method is evaluated through simulation on standard image classification tasks, demonstrating its effectiveness in achieving substantial reductions in transmit power compared with existing alternatives.
引用
收藏
页码:259 / 267
页数:9
相关论文
共 50 条
  • [31] Over-the-Air Hierarchical Personalized Federated Learning
    Zhou, Fangtong
    Wang, Zhibin
    Shan, Hangguan
    Wu, Liantao
    Tian, Xiaohua
    Shi, Yuanming
    Zhou, Yong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 5006 - 5021
  • [32] Learning Rate Optimization for Federated Learning Exploiting Over-the-Air Computation
    Xu, Chunmei
    Liu, Shengheng
    Yang, Zhaohui
    Huang, Yongming
    Wong, Kai-Kit
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) : 3742 - 3756
  • [33] User Scheduling for Federated Learning Through Over-the-Air Computation
    Ma, Xiang
    Sun, Haijian
    Wang, Qun
    Hu, Rose Qingyang
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [34] The Analysis and Optimization of Volatile Clients in Over-the-Air Federated Learning
    Shi, Fang
    Lin, Weiwei
    Wang, Xiumin
    Li, Keqin
    Zomaya, Albert Y.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 13144 - 13157
  • [35] Communication-and-Energy Efficient Over-the-Air Federated Learning
    Liang, Yipeng
    Chen, Qimei
    Zhu, Guangxu
    Jiang, Hao
    Eldar, Yonina C.
    Cui, Shuguang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2025, 24 (01) : 767 - 782
  • [36] Multiple Parallel Federated Learning via Over-the-Air Computation
    Shi, Gaoxin
    Guo, Shuaishuai
    Ye, Jia
    Saeed, Nasir
    Dang, Shuping
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2022, 3 : 1252 - 1264
  • [37] On the Differential Privacy in Federated Learning Based on Over-the-Air Computation
    Park, Sangjun
    Choi, Wan
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (05) : 4269 - 4283
  • [38] Online Optimization for Over-the-Air Federated Learning With Energy Harvesting
    An, Qiaochu
    Zhou, Yong
    Wang, Zhibin
    Shan, Hangguan
    Shi, Yuanming
    Bennis, Mehdi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 7291 - 7306
  • [39] Joint Antenna Selection and Beamforming for Massive MIMO-Enabled Over-the-Air Federated Learning
    Asaad, Saba
    Tabassum, Hina
    Ouyang, Chongjun
    Wang, Ping
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (08) : 8603 - 8618
  • [40] Over-the-Air Federated Learning with Compressed Sensing: Is Sparsification Necessary?
    Edin, Adrian
    Chen, Zheng
    2024 IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING FOR COMMUNICATION AND NETWORKING, ICMLCN 2024, 2024, : 287 - 292