Power Minimization in Federated Learning with Over-the-air Aggregation and Receiver Beamforming

被引:0
|
作者
Kalarde, Faeze Moradi [1 ]
Liang, Ben [1 ]
Dong, Min [2 ]
Ahmed, Yahia A. Eldemerdash [3 ]
Cheng, Ho Ting [3 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] Ontario Tech Univ, Oshawa, ON, Canada
[3] Ericsson Canada, Ottawa, ON, Canada
来源
PROCEEDINGS OF THE INT'L ACM CONFERENCE ON MODELING, ANALYSIS AND SIMULATION OF WIRELESS AND MOBILE SYSTEMS, MSWIM 2023 | 2023年
基金
加拿大自然科学与工程研究理事会;
关键词
Federated Learning; Over-the-air Computation; Power Consumption; Multi-antenna Beamforming;
D O I
10.1145/3616388.3617534
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Combining over-the-air uplink transmission and multi-antenna beamforming can improve the efficiency of federated learning (FL). However, to mitigate the significant aggregation error due to communication noise and signal distortion, pre-processing of device signals and post-processing at the server are required. In this paper, we study the optimization of receiver beamforming and device transmit weights in over-the-air FL, to minimize the total transmit power in each communication round while guaranteeing the convergence of FL. We establish sufficient convergence conditions based on the analysis of gradient descent with error and formulate a power minimization problem. An alternating optimization approach is then employed to decompose the problem into tractable subproblems, and efficient solutions are developed for these subproblems. Our proposed method is evaluated through simulation on standard image classification tasks, demonstrating its effectiveness in achieving substantial reductions in transmit power compared with existing alternatives.
引用
收藏
页码:259 / 267
页数:9
相关论文
共 50 条
  • [21] Private Federated Learning With Misaligned Power Allocation via Over-the-Air Computation
    Yan, Na
    Wang, Kezhi
    Pan, Cunhua
    Chai, Kok Keong
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (09) : 1994 - 1998
  • [22] Over-the-Air Federated Learning Exploiting Channel Perturbation
    Hamidi, Shayan Mohajer
    Mehrabi, Mohammad
    Khandani, Amir K.
    Gunduz, Deniz
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [23] ROBUST FEDERATED LEARNING VIA OVER-THE-AIR COMPUTATION
    Sifaou, Houssem
    Li, Geoffrey Ye
    2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [24] Cloud-RAN Over-the-Air Federated Learning
    Ma, Haoming
    Yuan, Xiaojun
    Ding, Zhi
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 4257 - 4262
  • [25] BYZANTINE-RESILIENT HIERARCHICAL FEDERATED LEARNING WITH CLUSTERED OVER-THE-AIR AGGREGATION
    Nordlund, David
    Liao, Baling
    Chen, Zheng
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW 2024, 2024, : 715 - 719
  • [26] Over-the-Air Federated Learning with Enhanced Privacy
    Xue, Xiaochan
    Hasan, Moh Khalid
    Yu, Shucheng
    Kandel, Laxima Niure
    Song, Min
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4546 - 4551
  • [27] COTAF: Convergent Over-the-Air Federated Learning
    Sery, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina C.
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [28] Joint Pre-Equalization and Receiver Combining Design for Federated Learning With Misaligned Over-the-Air Computation
    Wang, Jianda
    Guo, Shuaishuai
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2023, 4 : 2881 - 2896
  • [29] Cohort-based Power Scaling and Gradient Recovery for Over-The-Air Federated Learning
    Terai, Koudai
    Chiang, Yi-Han
    Lin, Hai
    Ji, Yusheng
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [30] Inverse Feasibility in Over-the-Air Federated Learning
    Piotrowski, Tomasz
    Ismayilov, Rafail
    Frey, Matthias
    Cavalcante, Renato L. G.
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1434 - 1438