Benchmarking protein structure predictors to assist machine learning-guided peptide discovery

被引:3
作者
Aldas-Bulos, Victor Daniel [1 ]
Plisson, Fabien [1 ,2 ]
机构
[1] Natl Polytech Inst CINVESTAV IPN, Ctr Res & Adv Studies, Adv Genom Unit, Natl Lab Genom Biodivers LANGEBIO, Irapuato 36824, Guanajuato, Mexico
[2] Natl Polytech Inst CINVESTAV IPN, Ctr Res & Adv Studies, Dept Biotechnol & Biochem, Irapuato Unit, Irapuato 36824, Guanajuato, Mexico
来源
DIGITAL DISCOVERY | 2023年 / 2卷 / 04期
关键词
SECONDARY STRUCTURE PREDICTION; ARTIFICIAL-INTELLIGENCE; ANTIMICROBIAL PEPTIDES; DESIGN; LANGUAGE; DATABASE;
D O I
10.1039/d3dd00045a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Machine learning models provide an informed and efficient strategy to create novel peptide and protein sequences with the desired profiles. Nevertheless, they are primarily trained on sequences where the tridimensional structures of peptides and proteins are often overlooked. We need a fast and reliable approach to estimate the structural diversity of medium-large training sets before building models. This study benchmarked four protein structure prediction methods (Jpred4, PEP2D, PSIPRED, AlphaFold2) using 261 curated and experimentally known structures from the PDBe database. We applied our best predictor to map the structural landscape of GRAMPA, the giant and vastly uncharted repository of 5980 antimicrobial peptides. The dataset was predominantly made of loose helices (65.1%), followed by random coils (17.8%), and beta-stranded and mixed structures accounted for the rest. Machine learning models provide an informed and efficient strategy to create novel peptide and protein sequences with the desired profiles.
引用
收藏
页码:981 / 993
页数:13
相关论文
共 67 条
[1]   In silico proof of principle of machine learning-based antibody design at unconstrained scale [J].
Akbar, Rahmad ;
Robert, Philippe A. ;
Weber, Cedric R. ;
Widrich, Michael ;
Frank, Robert ;
Pavlovic, Milena ;
Scheffer, Lonneke ;
Chernigovskaya, Maria ;
Snapkov, Igor ;
Slabodkin, Andrei ;
Mehta, Brij Bhushan ;
Miho, Enkelejda ;
Lund-Johansen, Fridtjof ;
Andersen, Jan Terje ;
Hochreiter, Sepp ;
Haff, Ingrid Hobaek ;
Klambauer, Guenter ;
Sandve, Geir Kjetil ;
Greiff, Victor .
MABS, 2022, 14 (01)
[2]   PDBe: improved findability of macromolecular structure data in the PDB [J].
Armstrong, David R. ;
Berrisford, John M. ;
Conroy, Matthew J. ;
Gutmanas, Aleksandras ;
Anyango, Stephen ;
Choudhary, Preeti ;
Clark, Alice R. ;
Dana, Jose M. ;
Deshpande, Mandar ;
Dunlop, Roisin ;
Gane, Paul ;
Gaborova, Romana ;
Gupta, Deepti ;
Haslam, Pauline ;
Koca, Jaroslav ;
Mak, Lora ;
Mir, Saqib ;
Mukhopadhyay, Abhik ;
Nadzirin, Nurul ;
Nair, Sreenath ;
Paysan-Lafosse, Typhaine ;
Pravda, Lukas ;
Sehnal, David ;
Salih, Osman ;
Smart, Oliver ;
Tolchard, James ;
Varadi, Mihaly ;
Svobodova-Varekova, Radka ;
Zaki, Hossam ;
Kleywegt, Gerard J. ;
Velankar, Sameer .
NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) :D335-D343
[3]   Machine learning overcomes human bias in the discovery of self-assembling peptides [J].
Batra, Rohit ;
Loeffler, Troy D. ;
Chan, Henry ;
Srinivasan, Srilok ;
Cui, Honggang ;
Korendovych, Ivan, V ;
Nanda, Vikas ;
Palmer, Liam C. ;
Solomon, Lee A. ;
Fry, H. Christopher ;
Sankaranarayanan, Subramanian K. R. S. .
NATURE CHEMISTRY, 2022, 14 (12) :1427-+
[4]   Machine learning to design integral membrane channelrhodopsins for efficient eukaryotic expression and plasma membrane localization [J].
Bedbrook, Claire N. ;
Yang, Kevin K. ;
Rice, Austin J. ;
Gradinaru, Viviana ;
Arnold, Frances H. .
PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (10)
[5]   Improving de novo protein binder design with deep learning [J].
Bennett, Nathaniel R. ;
Coventry, Brian ;
Goreshnik, Inna ;
Huang, Buwei ;
Allen, Aza ;
Vafeados, Dionne ;
Peng, Ying Po ;
Dauparas, Justas ;
Baek, Minkyung ;
Stewart, Lance ;
DiMaio, Frank ;
De Munck, Steven ;
Savvides, Savvas N. ;
Baker, David .
NATURE COMMUNICATIONS, 2023, 14 (01)
[6]   Learning the protein language: Evolution, structure, and function [J].
Bepler, Tristan ;
Berger, Bonnie .
CELL SYSTEMS, 2021, 12 (06) :654-+
[7]   Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides [J].
Boone, Kyle ;
Wisdom, Cate ;
Camarda, Kyle ;
Spencer, Paulette ;
Tamerler, Candan .
BMC BIOINFORMATICS, 2021, 22 (01)
[8]   The PSIPRED Protein Analysis Workbench: 20 years on [J].
Buchan, Daniel W. A. ;
Jones, David T. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (W1) :W402-W407
[9]   Machine learning designs non-hemolytic antimicrobial peptides [J].
Capecchi, Alice ;
Cai, Xingguang ;
Personne, Hippolyte ;
Kohler, Thilo ;
van Delden, Christian ;
Reymond, Jean-Louis .
CHEMICAL SCIENCE, 2021, 12 (26) :9221-9232
[10]   Computer-Aided Design of Antimicrobial Peptides: Are We Generating Effective Drug Candidates? [J].
Cardoso, Marlon H. ;
Orozco, Raquel Q. ;
Rezende, Samilla B. ;
Rodrigues, Gisele ;
Oshiro, Karen G. N. ;
Candido, Elizabete S. ;
Franco, Octavio L. .
FRONTIERS IN MICROBIOLOGY, 2020, 10