Strong exciton-photon coupling in self-hybridized organic-inorganic lead halide perovskite microcavities

被引:2
作者
Tahir, Zeeshan [4 ,5 ]
Jung, Jin-Woo [2 ]
Rashid, Mamoon Ur [4 ,5 ]
Kim, Sungdo [4 ,5 ]
Dang, Dinh Khoi [4 ,5 ]
Kang, Jang-Won [1 ]
Cho, Chang-Hee [2 ]
Jang, Joon I. [3 ]
Kim, Yong Soo [4 ,5 ]
机构
[1] Mokpo Natl Univ, Dept Semicond & Appl Phys, Muan 58554, South Korea
[2] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Phys & Chem, Daegu 42988, South Korea
[3] Sogang Univ, Dept Phys, Seoul 04017, South Korea
[4] Univ Ulsan, Harvest Storage Res Ctr, Dept Semicond Phys & Energy, Ulsan 44610, South Korea
[5] Ho Chi Minh City Univ Technol & Educ, Fac Chem & Food Technol, Ho Chi Minh City, Vietnam
基金
新加坡国家研究基金会;
关键词
strong coupling; exciton-polaritons; self-hybridized optical microcavities; organic-inorganic lead halide perovskites; POLARITON; LASERS;
D O I
10.1515/nanoph-2023-0366
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Controlling coherent light-matter interactions in semiconductor microcavities is at the heart of the next-generation solid-state polaritonic devices. Organic-inorganic hybrid perovskites are potential materials for room-temperature polaritonics owing to their high exciton oscillator strengths and large exciton binding energies. Herein, we report on strong exciton-photon coupling in the micro-platelet and micro-ribbon shaped methylammonium lead bromide single crystals. Owing to high crystallinity and large refractive index, the as-grown perovskite microcrystals serve as self-hybridized optical microcavities along different orientations due to their distinct physical dimensionalities. In this regard, the perovskite micro-platelet forms a simple Fabry-Perot microcavity in out-of-plane orientation, while the micro-ribbon functions as a Fabry-Perot type waveguide microcavity within the plane of the perovskite sample. Consequently, excitons in these microcavities strongly interact with their corresponding uncoupled cavity modes, yielding multimode exciton-polaritons with Rabi splitting energies similar to 205 and 235 meV for micro-platelet and micro-ribbon geometry, respectively. Furthermore, micro-ribbon geometry displays Young's double-slit-like interference patterns, which together with the numerical simulation readily reveals the parity and the mode order of the uncoupled cavity modes. Thus, our results not only shed light on strong exciton-photon coupling in various morphologies of methylammonium lead bromide microcrystals but also open an avenue for advanced polaritonic devices.
引用
收藏
页码:4297 / 4306
页数:10
相关论文
共 52 条
[1]   Superfluidity of polaritons in semiconductor microcavities [J].
Amo, Alberto ;
Lefrere, Jerome ;
Pigeon, Simon ;
Adrados, Claire ;
Ciuti, Cristiano ;
Carusotto, Iacopo ;
Houdre, Romuald ;
Giacobino, Elisabeth ;
Bramati, Alberto .
NATURE PHYSICS, 2009, 5 (11) :805-810
[2]   Ultra-low threshold polariton lasing in photonic crystal cavities [J].
Azzini, Stefano ;
Gerace, Dario ;
Galli, Matteo ;
Sagnes, Isabelle ;
Braive, Remy ;
Lemaitre, Aristide ;
Bloch, Jacqueline ;
Bajoni, D. .
APPLIED PHYSICS LETTERS, 2011, 99 (11)
[3]   Polaritonic Neuromorphic Computing Outperforms Linear Classifiers [J].
Ballarini, Dario ;
Gianfrate, Antonio ;
Panico, Riccardo ;
Opala, Andrzej ;
Ghosh, Sanjib ;
Dominici, Lorenzo ;
Ardizzone, Vincenzo ;
De Giorgi, Milena ;
Lerario, Giovanni ;
Gigli, Giuseppe ;
Liew, Timothy C. H. ;
Matuszewski, Michal ;
Sanvitto, Daniele .
NANO LETTERS, 2020, 20 (05) :3506-3512
[4]   Strong Coupling between Self-Assembled Molecules and Surface Plasmon Polaritons [J].
Bigeon, J. ;
Le Liepvre, S. ;
Vassant, S. ;
Belabas, N. ;
Bardou, N. ;
Minot, C. ;
Yacomotti, A. ;
Levenson, A. ;
Charra, F. ;
Barbay, S. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (22) :5626-5632
[5]   Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors [J].
Brehier, A. ;
Parashkov, R. ;
Lauret, J. S. ;
Deleporte, E. .
APPLIED PHYSICS LETTERS, 2006, 89 (17)
[6]   Measuring n and k at the Microscale in Single Crystals of CH3NH3PbBr3 Perovskite [J].
Brittman, Sarah ;
Garnett, Erik C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (01) :616-620
[7]  
Byrnes T, 2014, NAT PHYS, V10, P803, DOI [10.1038/nphys3143, 10.1038/NPHYS3143]
[8]   Optically Controlled Femtosecond Polariton Switch at Room Temperature [J].
Chen, Fei ;
Li, Hui ;
Zhou, Hang ;
Luo, Song ;
Sun, Zheng ;
Ye, Ziyu ;
Sun, Fenghao ;
Wang, Jiawei ;
Zheng, Yuanlin ;
Chen, Xianfeng ;
Xu, Huailiang ;
Xu, Hongxing ;
Byrnes, Tim ;
Chen, Zhanghai ;
Wu, Jian .
PHYSICAL REVIEW LETTERS, 2022, 129 (05)
[9]   Room-temperature polariton lasing in GaN microrods with large Rabi splitting [J].
Chen, Huanqing ;
Li, Junchao ;
Yu, Guo ;
Zong, Hua ;
Lang, Rui ;
Lei, Menglai ;
Li, Shukun ;
Khan, Muhammad Saddique Akbar ;
Yang, Yue ;
Wei, Tiantian ;
Liao, Hui ;
Meng, Linghai ;
Wen, Peijun ;
Hu, Xiaodong .
OPTICS EXPRESS, 2022, 30 (10) :16794-16801
[10]   Exciton-polariton Bose-Einstein condensation [J].
Deng, Hui ;
Haug, Hartmut ;
Yamamoto, Yoshihisa .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1489-1537