Widespread epistasis among beneficial genetic variants revealed by high-throughput genome editing

被引:12
作者
Ang, Roy Moh Lik [1 ]
Chen, Shi-An A. [2 ]
Kern, Alexander F. [1 ]
Xie, Yihua [2 ]
Fraser, Hunter B. [2 ]
机构
[1] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
来源
CELL GENOMICS | 2023年 / 3卷 / 04期
关键词
SACCHAROMYCES-CEREVISIAE; MODIFIER GENES; YEAST; EVOLUTION; PROTEIN; FLOCCULATION; ADAPTATION; EXPRESSION; MUTATIONS; PHENOTYPE;
D O I
10.1016/j.xgen.2023.100260
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The phenotypic effect of any genetic variant can be altered by variation at other genomic loci. Known as epistasis, these genetic interactions shape the genotype-phenotype map of every species, yet their origins remain poorly understood. To investigate this, we employed high-throughput genome editing to measure the fitness effects of 1,826 naturally polymorphic variants in four strains of Saccharomyces cerevisiae. About 31% of variants affect fitness, of which 24% have strain-specific fitness effects indicative of epistasis. We found that beneficial variants are more likely to exhibit genetic interactions and that these inter-actions can be mediated by specific traits such as flocculation ability. This work suggests that adaptive evolution will often involve trade-offs where a variant is only beneficial in some genetic backgrounds, potentially explaining why many beneficial variants remain polymorphic. In sum, we provide a framework to understand the factors influencing epistasis with single-nucleotide resolution, revealing widespread epistasis among beneficial variants.
引用
收藏
页数:24
相关论文
共 75 条
[1]   Repeat-Specific Functions for the C-Terminal Domain of RNA Polymerase II in Budding Yeast [J].
Babokhov, Michael ;
Mosaheb, Mohammad M. ;
Baker, Richard W. ;
Fuchs, Stephen M. .
G3-GENES GENOMES GENETICS, 2018, 8 (05) :1593-1601
[2]   Idiosyncratic epistasis leads to global fitness-correlated trends [J].
Bakerlee, Christopher W. ;
Ba, Alex N. Nguyen ;
Shulgina, Yekaterina ;
Echenique, Jose I. Rojas ;
Desai, Michael M. .
SCIENCE, 2022, 376 (6593) :630-+
[3]   Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision [J].
Bao, Zehua ;
HamediRad, Mohammad ;
Xue, Pu ;
Xiao, Han ;
Tasan, Ipek ;
Chao, Ran ;
Liang, Jing ;
Zhao, Huimin .
NATURE BIOTECHNOLOGY, 2018, 36 (06) :505-+
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]   Evolutionary capacitance as a general feature of complex gene networks [J].
Bergman, A ;
Siegal, ML .
NATURE, 2003, 424 (6948) :549-552
[6]   Genetic interactions contribute less than additive effects to quantitative trait variation in yeast [J].
Bloom, Joshua S. ;
Kotenko, Iulia ;
Sadhu, Meru J. ;
Treusch, Sebastian ;
Albert, Frank W. ;
Kruglyak, Leonid .
NATURE COMMUNICATIONS, 2015, 6
[7]   Finding the sources of missing heritability in a yeast cross [J].
Bloom, Joshua S. ;
Ehrenreich, Ian M. ;
Loo, Wesley T. ;
Thuy-Lan Vo Lite ;
Kruglyak, Leonid .
NATURE, 2013, 494 (7436) :234-237
[8]   Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p [J].
Bony, M ;
ThinesSempoux, D ;
Barre, P ;
Blondin, B .
JOURNAL OF BACTERIOLOGY, 1997, 179 (15) :4929-4936
[9]   Genetic dissection of transcriptional regulation in budding yeast [J].
Brem, RB ;
Yvert, G ;
Clinton, R ;
Kruglyak, L .
SCIENCE, 2002, 296 (5568) :752-755
[10]   A comprehensive strategy enabling high-resolution functional analysis of the yeast genome [J].
Breslow, David K. ;
Cameron, Dale M. ;
Collins, Sean R. ;
Schuldiner, Maya ;
Stewart-Ornstein, Jacob ;
Newman, Heather W. ;
Braun, Sigurd ;
Madhani, Hiten D. ;
Krogan, Nevan J. ;
Weissman, Jonathan S. .
NATURE METHODS, 2008, 5 (08) :711-718