Berry Curvature and Bulk-Boundary Correspondence from Transport Measurement for Photonic Chern Bands

被引:7
|
作者
Chen, Chao [1 ,2 ,3 ,4 ,5 ]
Liu, Run-Ze [1 ,2 ,3 ,4 ]
Wu, Jizhou [6 ]
Su, Zu-En [7 ,8 ]
Ding, Xing [1 ,2 ,3 ,4 ]
Qin, Jian [1 ,2 ,3 ,4 ]
Wang, Lin [9 ]
Zhang, Wei-Wei [10 ]
He, Yu [11 ]
Wang, Xi-Lin [5 ]
Lu, Chao-Yang [1 ,2 ,3 ,4 ]
Li, Li [1 ,2 ,3 ,4 ]
Sanders, Barry C. [1 ,2 ,3 ,4 ,12 ]
Liu, Xiong-Jun [13 ,14 ,15 ]
Pan, Jian-Wei [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence, Shanghai 201315, Peoples R China
[4] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Shanghai 201315, Peoples R China
[5] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[6] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[7] Technion Israel Inst Technol, Phys Dept, IL-3200003 Haifa, Israel
[8] Technion Israel Inst Technol, Solid State Inst, IL-3200003 Haifa, Israel
[9] Univ Konstanz, Dept Phys, D-78457 Constance, Germany
[10] Northwestern Polytech Univ, Sch Comp Sci, Xian 710129, Peoples R China
[11] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[12] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada
[13] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[14] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
[15] Int Quantum Acad, Shenzhen 518048, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
EDGE STATES; PHASE; REALIZATION; HYPERORBITS; INSULATOR; DYNAMICS; NUMBER;
D O I
10.1103/PhysRevLett.131.133601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Berry curvature is a fundamental element to characterize topological quantum physics, while a full measurement of Berry curvature in momentum space was not reported for topological states. Here we achieve two-dimensional Berry curvature reconstruction in a photonic quantum anomalous Hall system via Hall transport measurement of a momentum-resolved wave packet. Integrating measured Berry curvature over the two-dimensional Brillouin zone, we obtain Chern numbers corresponding to -1 and 0. Further, we identify bulk-boundary correspondence by measuring topology-linked chiral edge states at the boundary. The full topological characterization of photonic Chern bands from Berry curvature, Chern number, and edge transport measurements enables our photonic system to serve as a versatile platform for further in-depth study of novel topological physics.
引用
收藏
页数:7
相关论文
共 34 条
  • [31] Section Chern number for a three-dimensional photonic crystal and the bulk-edge correspondence
    Oono, Shuhei
    Kariyado, Toshikaze
    Hatsugai, Yasuhiro
    PHYSICAL REVIEW B, 2016, 94 (12)
  • [32] Wiener-Hopf factorization approach to a bulk-boundary correspondence and stability conditions for topological zero-energy modes
    Alase, Abhijeet
    Cobanera, Emilio
    Ortiz, Gerardo
    Viola, Lorenza
    ANNALS OF PHYSICS, 2023, 458
  • [33] Numerical evidence for spin chirality emerging from bands with Berry curvature in itinerant ferromagnets
    Yang, Shuai
    Dong, Zhiyu
    Chen, Yan
    PHYSICAL REVIEW B, 2025, 111 (13)
  • [34] Dynamical preparation of a topological state and out-of-equilibrium bulk-boundary correspondence in a Su-Schrieffer-Heeger chain under periodic driving
    Bandyopadhyay, Souvik
    Dutta, Amit
    PHYSICAL REVIEW B, 2019, 100 (14)