Berry Curvature and Bulk-Boundary Correspondence from Transport Measurement for Photonic Chern Bands

被引:7
|
作者
Chen, Chao [1 ,2 ,3 ,4 ,5 ]
Liu, Run-Ze [1 ,2 ,3 ,4 ]
Wu, Jizhou [6 ]
Su, Zu-En [7 ,8 ]
Ding, Xing [1 ,2 ,3 ,4 ]
Qin, Jian [1 ,2 ,3 ,4 ]
Wang, Lin [9 ]
Zhang, Wei-Wei [10 ]
He, Yu [11 ]
Wang, Xi-Lin [5 ]
Lu, Chao-Yang [1 ,2 ,3 ,4 ]
Li, Li [1 ,2 ,3 ,4 ]
Sanders, Barry C. [1 ,2 ,3 ,4 ,12 ]
Liu, Xiong-Jun [13 ,14 ,15 ]
Pan, Jian-Wei [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence, Shanghai 201315, Peoples R China
[4] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Shanghai 201315, Peoples R China
[5] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[6] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[7] Technion Israel Inst Technol, Phys Dept, IL-3200003 Haifa, Israel
[8] Technion Israel Inst Technol, Solid State Inst, IL-3200003 Haifa, Israel
[9] Univ Konstanz, Dept Phys, D-78457 Constance, Germany
[10] Northwestern Polytech Univ, Sch Comp Sci, Xian 710129, Peoples R China
[11] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[12] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada
[13] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[14] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
[15] Int Quantum Acad, Shenzhen 518048, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
EDGE STATES; PHASE; REALIZATION; HYPERORBITS; INSULATOR; DYNAMICS; NUMBER;
D O I
10.1103/PhysRevLett.131.133601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Berry curvature is a fundamental element to characterize topological quantum physics, while a full measurement of Berry curvature in momentum space was not reported for topological states. Here we achieve two-dimensional Berry curvature reconstruction in a photonic quantum anomalous Hall system via Hall transport measurement of a momentum-resolved wave packet. Integrating measured Berry curvature over the two-dimensional Brillouin zone, we obtain Chern numbers corresponding to -1 and 0. Further, we identify bulk-boundary correspondence by measuring topology-linked chiral edge states at the boundary. The full topological characterization of photonic Chern bands from Berry curvature, Chern number, and edge transport measurements enables our photonic system to serve as a versatile platform for further in-depth study of novel topological physics.
引用
收藏
页数:7
相关论文
共 34 条
  • [21] Universal higher-order bulk-boundary correspondence of triple nodal points
    Lenggenhager, Patrick M.
    Liu, Xiaoxiong
    Neupert, Titus
    Bzdusek, Tomas
    PHYSICAL REVIEW B, 2022, 106 (08)
  • [22] Generalized bulk-boundary correspondence in periodically driven non-Hermitian systems
    Ji, Xiang
    Yang, Xiaosen
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (24)
  • [23] Exact higher-order bulk-boundary correspondence of corner-localized states
    Jung, Minwoo
    Yu, Yang
    Shvets, Gennady
    PHYSICAL REVIEW B, 2021, 104 (19)
  • [24] Dual bulk-boundary correspondence in a nonreciprocal spin-orbit coupled zigzag lattice
    Li, Lingfang
    Hou, Chong
    Wu, Gangzhou
    Ruan, Yang
    Chen, Shihua
    Yuan, Luqi
    Ni, Zhenhua
    PHYSICAL REVIEW B, 2024, 110 (04)
  • [25] Second-order bulk-boundary correspondence in rotationally symmetric topological superconductors from stacked Dirac Hamiltonians
    Roberts, Elis
    Behrends, Jan
    Beri, Benjamin
    PHYSICAL REVIEW B, 2020, 101 (15)
  • [26] Universal numerical calculation method for the Berry curvature and Chern numbers of typical topological photonic crystals
    Wang, Chenyang
    Zhang, Hongyu
    Yuan, Hongyi
    Zhong, Jinrui
    Lu, Cuicui
    FRONTIERS OF OPTOELECTRONICS, 2020, 13 (01) : 73 - 88
  • [27] Bosonic topological phases of matter: Bulk-boundary correspondence, symmetry protected topological invariants, and gauging
    Tiwari, Apoorv
    Chen, Xiao
    Shiozaki, Ken
    Ryu, Shinsei
    PHYSICAL REVIEW B, 2018, 97 (24)
  • [28] Reconstructed conventional bulk-boundary correspondence in the non-Hermitian s-wave nodal-ring superconductor
    Zhang, Chunhui
    Sheng, Li
    Xing, Dingyu
    PHYSICAL REVIEW B, 2021, 104 (10)
  • [29] Odd-frequency pairs in chiral symmetric systems: Spectral bulk-boundary correspondence and topological criticality
    Tamura, Shun
    Hoshino, Shintaro
    Tanaka, Yukio
    PHYSICAL REVIEW B, 2019, 99 (18)
  • [30] Thouless Pumps and Bulk-Boundary Correspondence in Higher-Order Symmetry-Protected Topological Phases
    Wienand, Julian F.
    Horn, Friederike
    Aidelsburger, Monika
    Bibo, Julian
    Grusdt, Fabian
    PHYSICAL REVIEW LETTERS, 2022, 128 (24)