Berry Curvature and Bulk-Boundary Correspondence from Transport Measurement for Photonic Chern Bands

被引:7
|
作者
Chen, Chao [1 ,2 ,3 ,4 ,5 ]
Liu, Run-Ze [1 ,2 ,3 ,4 ]
Wu, Jizhou [6 ]
Su, Zu-En [7 ,8 ]
Ding, Xing [1 ,2 ,3 ,4 ]
Qin, Jian [1 ,2 ,3 ,4 ]
Wang, Lin [9 ]
Zhang, Wei-Wei [10 ]
He, Yu [11 ]
Wang, Xi-Lin [5 ]
Lu, Chao-Yang [1 ,2 ,3 ,4 ]
Li, Li [1 ,2 ,3 ,4 ]
Sanders, Barry C. [1 ,2 ,3 ,4 ,12 ]
Liu, Xiong-Jun [13 ,14 ,15 ]
Pan, Jian-Wei [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence, Shanghai 201315, Peoples R China
[4] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Shanghai 201315, Peoples R China
[5] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[6] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[7] Technion Israel Inst Technol, Phys Dept, IL-3200003 Haifa, Israel
[8] Technion Israel Inst Technol, Solid State Inst, IL-3200003 Haifa, Israel
[9] Univ Konstanz, Dept Phys, D-78457 Constance, Germany
[10] Northwestern Polytech Univ, Sch Comp Sci, Xian 710129, Peoples R China
[11] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[12] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada
[13] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[14] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
[15] Int Quantum Acad, Shenzhen 518048, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
EDGE STATES; PHASE; REALIZATION; HYPERORBITS; INSULATOR; DYNAMICS; NUMBER;
D O I
10.1103/PhysRevLett.131.133601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Berry curvature is a fundamental element to characterize topological quantum physics, while a full measurement of Berry curvature in momentum space was not reported for topological states. Here we achieve two-dimensional Berry curvature reconstruction in a photonic quantum anomalous Hall system via Hall transport measurement of a momentum-resolved wave packet. Integrating measured Berry curvature over the two-dimensional Brillouin zone, we obtain Chern numbers corresponding to -1 and 0. Further, we identify bulk-boundary correspondence by measuring topology-linked chiral edge states at the boundary. The full topological characterization of photonic Chern bands from Berry curvature, Chern number, and edge transport measurements enables our photonic system to serve as a versatile platform for further in-depth study of novel topological physics.
引用
收藏
页数:7
相关论文
共 34 条
  • [1] Unified bulk-boundary correspondence for band insulators
    Rhim, Jun-Won
    Bardarson, Jens H.
    Slager, Robert-Jan
    PHYSICAL REVIEW B, 2018, 97 (11)
  • [2] Unitary preparation of many-body Chern insulators: Adiabatic bulk-boundary correspondence
    Bandyopadhyay, Souvik
    Dutta, Amit
    PHYSICAL REVIEW B, 2020, 102 (09)
  • [3] Edge states and the bulk-boundary correspondence in Dirac Hamiltonians
    Mong, Roger S. K.
    Shivamoggi, Vasudha
    PHYSICAL REVIEW B, 2011, 83 (12)
  • [4] T-Duality Simplifies Bulk-Boundary Correspondence
    Mathai, Varghese
    Thiang, Guo Chuan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 345 (02) : 675 - 701
  • [5] Bulk valley transport and Berry curvature spreading at the edge of flat bands
    Sinha, Subhajit
    Adak, Pratap Chandra
    Kanthi, R. S. Surya
    Chittari, Bheema Lingam
    Sangani, L. D. Varma
    Watanabe, Kenji
    Taniguchi, Takashi
    Jung, Jeil
    Deshmukh, Mandar M.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [6] Fractional Chern insulators in bands with zero Berry curvature
    Simon, Steven H.
    Harper, Fenner
    Read, N.
    PHYSICAL REVIEW B, 2015, 92 (19)
  • [7] T-duality and the bulk-boundary correspondence
    Hannabuss, Keith C.
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 124 : 421 - 435
  • [8] Bulk-Boundary Correspondence for Sturmian Kohmoto-Like Models
    Kellendonk, Johannes
    Prodan, Emil
    ANNALES HENRI POINCARE, 2019, 20 (06): : 2039 - 2070
  • [9] Experimental measurement of the Berry curvature from anomalous transport
    Wimmer, Martin
    Price, Hannah M.
    Carusotto, Iacopo
    Peschel, Ulf
    NATURE PHYSICS, 2017, 13 (06) : 545 - 550
  • [10] T-Duality Simplifies Bulk-Boundary Correspondence: Some Higher Dimensional Cases
    Mathai, Varghese
    Thiang, Guo Chuan
    ANNALES HENRI POINCARE, 2016, 17 (12): : 3399 - 3424