Continuous electroproduction of formate via CO2 reduction on local symmetry-broken single-atom catalysts

被引:130
作者
Dong, Juncai [1 ]
Liu, Yangyang [2 ,3 ]
Pei, Jiajing [1 ]
Li, Haijing [1 ]
Ji, Shufang [4 ]
Shi, Lei [2 ]
Zhang, Yaning [1 ]
Li, Can [5 ]
Tang, Cheng [6 ]
Liao, Jiangwen [1 ]
Xu, Shiqing [5 ]
Zhang, Huabin [7 ]
Li, Qi [2 ]
Zhao, Shenlong [2 ,3 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
[2] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[3] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[4] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada
[5] China Jiliang Univ, Coll Opt & Elect Technol, Key Lab Rare Earth Optoelect Mat & Devices Zhejian, Hangzhou 310018, Peoples R China
[6] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
[7] King Abdullah Univ Sci & Technol, KAUST Catalysis Ctr, Thuwal 239556900, Saudi Arabia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; COORDINATION-NUMBER; FORMIC-ACID; ELECTROREDUCTION; NANOPARTICLES; PROGRESS; COPPER;
D O I
10.1038/s41467-023-42539-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Atomic-level coordination engineering is an efficient strategy for tuning the catalytic performance of single-atom catalysts (SACs). However, their rational design has so far been plagued by the lack of a universal correlation between the coordination symmetry and catalytic properties. Herein, we synthesised planar-symmetry-broken CuN3 (PSB-CuN3) SACs through microwave heating for electrocatalytic CO2 reduction. Remarkably, the as-prepared catalysts exhibited a selectivity of 94.3% towards formate at -0.73 V vs. RHE, surpassing the symmetrical CuN4 catalyst (72.4% at -0.93 V vs. RHE). In a flow cell equipped with a PSB-CuN3 electrode, over 90% formate selectivity was maintained at an average current density of 94.4 mA cm(-2) during 100 h operation. By combining definitive structural identification with operando X-ray spectroscopy and theoretical calculations, we revealed that the intrinsic local symmetry breaking from planar D-4h configuration induces an unconventional dsp hybridisation, and thus a strong correlation between the catalytic activity and microenvironment of metal centre (i.e., coordination number and distortion), with high preference for formate production in CuN3 moiety. The finding opens an avenue for designing efficient SACs with specific local symmetries for selective electrocatalysis.
引用
收藏
页数:13
相关论文
共 50 条
[41]   Beyond single-atom catalysts: Exploration of Cu dimer and trimer for CO2 reduction to methane [J].
Yang, Jing ;
Liu, Ximeng ;
Yuan, Hao ;
Sun, Jianguo ;
Li, Lidao ;
Goh, Kuan Eng Johnson ;
Yu, Zhi Gen ;
Xue, Junmin ;
Wang, John ;
Zhang, Yong-Wei .
APPLIED CATALYSIS A-GENERAL, 2022, 642
[42]   Manipulating local environment and spin-state of single-atom via helical structure for CO2 electroreduction to formate [J].
Zhu, Liuliu ;
Ren, Huiyan ;
Gu, Hongbo .
JOURNAL OF ENERGY CHEMISTRY, 2025, 110 :347-355
[43]   CO2 reduction reaction pathways on single-atom Co sites: Impacts of local coordination environment [J].
Gao, Haixia ;
Liu, Kang ;
Luo, Tao ;
Chen, Yu ;
Hu, Junhua ;
Fu, Junwei ;
Liu, Min .
CHINESE JOURNAL OF CATALYSIS, 2022, 43 (03) :832-838
[44]   Electrocatalytic CO2 Reduction to Chemicals and Fuels: From Single-Atom to Dual-Atom [J].
Wang, Fangjun ;
Chen, Shiyi ;
Xu, Xiang ;
Chen, Xiaohan ;
Wu, Jiang ;
Chen, Shubo ;
Xiang, Wenguo ;
Duan, Lunbo .
SMALL, 2025,
[45]   Recent progress of electrochemical reduction of CO2 by single atom catalysts [J].
Wang, Tian ;
Zhang, Jincheng ;
Li, Fuhua ;
Liu, Bin ;
Kawi, Sibudjing .
MATERIALS REPORTS: ENERGY, 2022, 2 (03)
[46]   Recent Advances in Electrochemical CO2 Reduction Catalyzed by Single-Atom Alloys [J].
Wu, Wenjie ;
Long, Jun ;
Xiao, Jianping .
CHEMCATCHEM, 2025, 17 (06)
[47]   Tuning the product selectivity of single-atom catalysts for CO2 reduction beyond CO formation by orbital engineering [J].
Mari, Vasanthapandiyan ;
Karmodak, Naiwrit .
NANOSCALE, 2024, 16 (40) :18859-18870
[48]   Single-atom catalysis for electrochemical CO2 reduction [J].
Jia, Mingwen ;
Fan, Qun ;
Liu, Shizhen ;
Qiu, Jieshan ;
Sun, Zhenyu .
CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2019, 16 :1-6
[49]   Promoting Electrochemical CO2 Reduction via Boosting Activation of Adsorbed Intermediates on Iron Single-Atom Catalyst [J].
Chen, Jiayi ;
Wang, Tingting ;
Wang, Xinyue ;
Yang, Bin ;
Sang, Xiahan ;
Zheng, Sixing ;
Yao, Siyu ;
Li, Zhongjian ;
Zhang, Qinghua ;
Lei, Lecheng ;
Xu, Jiang ;
Dai, Liming ;
Hou, Yang .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (21)
[50]   Theoretical exploration on the activity of copper single-atom catalysts for electrocatalytic reduction of CO2 [J].
Min, Junyong ;
Liu, Lei ;
Chen, Fengjuan ;
Jin, Xuekun ;
Yuan, Tianjiao ;
Yao, Xiaoqian .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (14) :7735-7745