Continuous electroproduction of formate via CO2 reduction on local symmetry-broken single-atom catalysts

被引:130
作者
Dong, Juncai [1 ]
Liu, Yangyang [2 ,3 ]
Pei, Jiajing [1 ]
Li, Haijing [1 ]
Ji, Shufang [4 ]
Shi, Lei [2 ]
Zhang, Yaning [1 ]
Li, Can [5 ]
Tang, Cheng [6 ]
Liao, Jiangwen [1 ]
Xu, Shiqing [5 ]
Zhang, Huabin [7 ]
Li, Qi [2 ]
Zhao, Shenlong [2 ,3 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
[2] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[3] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[4] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada
[5] China Jiliang Univ, Coll Opt & Elect Technol, Key Lab Rare Earth Optoelect Mat & Devices Zhejian, Hangzhou 310018, Peoples R China
[6] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
[7] King Abdullah Univ Sci & Technol, KAUST Catalysis Ctr, Thuwal 239556900, Saudi Arabia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; COORDINATION-NUMBER; FORMIC-ACID; ELECTROREDUCTION; NANOPARTICLES; PROGRESS; COPPER;
D O I
10.1038/s41467-023-42539-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Atomic-level coordination engineering is an efficient strategy for tuning the catalytic performance of single-atom catalysts (SACs). However, their rational design has so far been plagued by the lack of a universal correlation between the coordination symmetry and catalytic properties. Herein, we synthesised planar-symmetry-broken CuN3 (PSB-CuN3) SACs through microwave heating for electrocatalytic CO2 reduction. Remarkably, the as-prepared catalysts exhibited a selectivity of 94.3% towards formate at -0.73 V vs. RHE, surpassing the symmetrical CuN4 catalyst (72.4% at -0.93 V vs. RHE). In a flow cell equipped with a PSB-CuN3 electrode, over 90% formate selectivity was maintained at an average current density of 94.4 mA cm(-2) during 100 h operation. By combining definitive structural identification with operando X-ray spectroscopy and theoretical calculations, we revealed that the intrinsic local symmetry breaking from planar D-4h configuration induces an unconventional dsp hybridisation, and thus a strong correlation between the catalytic activity and microenvironment of metal centre (i.e., coordination number and distortion), with high preference for formate production in CuN3 moiety. The finding opens an avenue for designing efficient SACs with specific local symmetries for selective electrocatalysis.
引用
收藏
页数:13
相关论文
共 68 条
[1]   Exclusive Formation of Formic Acid from CO2 Electroreduction by a Tunable Pd-Sn Alloy [J].
Bai, Xiaofang ;
Chen, Wei ;
Zhao, Chengcheng ;
Li, Shenggang ;
Song, Yanfang ;
Ge, Ruipeng ;
Wei, Wei ;
Sun, Yuhan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (40) :12219-12223
[2]   Self-consistent aspects of x-ray absorption calculations [J].
Bunau, O. ;
Joly, Y. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (34)
[3]   Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction [J].
Cao, Linlin ;
Luo, Qiquan ;
Chen, Jiajia ;
Wang, Lan ;
Lin, Yue ;
Wang, Huijuan ;
Liu, Xiaokang ;
Shen, Xinyi ;
Zhang, Wei ;
Liu, Wei ;
Qi, Zeming ;
Jiang, Zheng ;
Yang, Jinlong ;
Yao, Tao .
NATURE COMMUNICATIONS, 2019, 10 (1)
[4]   Enabling storage and utilization of low-carbon electricity: power to formic acid [J].
Chatterjee, Sudipta ;
Dutta, Indranil ;
Lum, Yanwei ;
Lai, Zhiping ;
Huang, Kuo-Wei .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (03) :1194-1246
[5]   Progress toward Commercial Application of Electrochemical Carbon Dioxide Reduction [J].
Chen, Chi ;
Kotyk, Juliet F. Khosrowabadi ;
Sheehan, Stafford W. .
CHEM, 2018, 4 (11) :2571-2586
[6]   A Tandem Strategy for Enhancing Electrochemical CO2 Reduction Activity of Single-Atom Cu-S1N3 Catalysts via Integration with Cu Nanoclusters [J].
Chen, Datong ;
Zhang, Lu-Hua ;
Du, Jian ;
Wang, Honghai ;
Guo, Jiangyi ;
Zhan, Jiayu ;
Li, Fei ;
Yu, Fengshou .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (45) :24022-24027
[7]   Tuning the coordination number of Fe single atoms for the efficient reduction of CO2 [J].
Chen, Huihuang ;
Guo, Xu ;
Kong, Xiangdong ;
Xing, Yulin ;
Liu, Yan ;
Yu, Bolong ;
Li, Qun-Xiang ;
Geng, Zhigang ;
Si, Rui ;
Zeng, Jie .
GREEN CHEMISTRY, 2020, 22 (21) :7529-7536
[8]   Molecular Inhibition for Selective CO2 Conversion [J].
Creissen, Charles E. ;
de la Cruz, Jose Guillermo Rivera ;
Karapinar, Dilan ;
Taverna, Dario ;
Schreiber, Moritz W. ;
Fontecave, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (32)
[9]   Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor [J].
Fan, Lei ;
Xia, Chuan ;
Zhu, Peng ;
Lu, Yingying ;
Wang, Haotian .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]   Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes [J].
Feaster, Jeremy T. ;
Shi, Chuan ;
Cave, Etosha R. ;
Hatsukade, Tom T. ;
Abram, David N. ;
Kuhl, Kendra P. ;
Hahn, Christopher ;
Norskov, Jens K. ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2017, 7 (07) :4822-4827