A Pseudolinear Maximum Correntropy Kalman Filter Framework for Bearings-Only Target Tracking

被引:15
作者
Zhong, Shan [1 ]
Peng, Bei [1 ]
Ouyang, Lingqiang [2 ]
Yang, Xinyue [2 ]
Zhang, Hongyu [2 ]
Wang, Gang [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Bearings-only measurements; maneuvering target tracking; maximum correntropy; pseudolinear estimation; RADAR; LOCALIZATION; PERFORMANCE; ALGORITHM; MOTION;
D O I
10.1109/JSEN.2023.3283863
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a framework for a pseudolinear Kalman filter (PLKF) based on the maximum correntropy criterion for the bearings-only target tracking problem in non-Gaussian environments. We first derive a pseudolinear maximum correntropy Kalman filter (PMCKF). To solve the offset problem, bias compensation is merged into PMCKF to realize bias-compensated PMCKF (BC-PMCKF). In the real scenario, the speed variation of the target is continuous during motion. Based on this premise, we implement the speed-constrained PMCKF (SC-PMCKF) algorithm in this framework, which suppresses the effect of impulsive noise on velocity estimation well. Finally, a posterior Cramer-Rao lower bound (PCRLB) under non-Gaussian noises is derived for the framework. Simulations and physical experiments show that the proposed estimation method is better than the traditional Kalman filter in non-Gaussian noise environments.
引用
收藏
页码:19524 / 19538
页数:15
相关论文
共 46 条
[31]   FUNDAMENTAL PROPERTIES AND PERFORMANCE OF CONVENTIONAL BEARINGS-ONLY TARGET MOTION ANALYSIS [J].
NARDONE, SC ;
LINDGREN, AG ;
GONG, KF .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (09) :775-787
[32]   Improved Pseudolinear Kalman Filter Algorithms for Bearings-Only Target Tracking [J].
Ngoc Hung Nguyen ;
Dogancay, Kutluyil .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (23) :6119-6134
[33]   Multi-rate strong tracking square-root cubature Kalman filter for MEMS-INS/GPS/polarization compass integrated navigation system [J].
Shen, Chong ;
Xiong, Yufeng ;
Zhao, Donghua ;
Wang, Chenguang ;
Cao, Huiliang ;
Song, Xiang ;
Tang, Jun ;
Liu, Jun .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 163
[34]  
Stansfield R., 1947, J IEE, V94, P762, DOI DOI 10.1049/JI-3A-2.1947.0096
[35]   Hybrid Genetic and Variational Expectation-Maximization Algorithm for Gaussian-Mixture-Model-Based Brain MR Image Segmentation [J].
Tian, GuangJian ;
Xia, Yong ;
Zhang, Yanning ;
Feng, Dagan .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2011, 15 (03) :373-380
[36]   Posterior Cramer-Rao bounds for discrete-time nonlinear filtering [J].
Tichavsky, P ;
Muravchik, CH ;
Nehorai, A .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (05) :1386-1396
[37]  
Van Trees H. L., 2004, Detection, estimation, and modulation theory, part I: detection, estimation, and linear modulation theory
[38]   A distributed maximum correntropy Kalman filter [J].
Wang, Gang ;
Xue, Rui ;
Wang, Jinxin .
SIGNAL PROCESSING, 2019, 160 :247-251
[39]   Distributed maximum correntropy linear and nonlinear filters for systems with non-Gaussian noises [J].
Wang, Guoqing ;
Li, Ning ;
Zhang, Yonggang .
SIGNAL PROCESSING, 2021, 182
[40]   Maximum Correntropy Rauch-Tung-Striebel Smoother for Nonlinear and Non-Gaussian Systems [J].
Wang, Guoqing ;
Zhang, Yonggang ;
Wang, Xiaodong .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (03) :1270-1277