A Pseudolinear Maximum Correntropy Kalman Filter Framework for Bearings-Only Target Tracking

被引:15
作者
Zhong, Shan [1 ]
Peng, Bei [1 ]
Ouyang, Lingqiang [2 ]
Yang, Xinyue [2 ]
Zhang, Hongyu [2 ]
Wang, Gang [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Bearings-only measurements; maneuvering target tracking; maximum correntropy; pseudolinear estimation; RADAR; LOCALIZATION; PERFORMANCE; ALGORITHM; MOTION;
D O I
10.1109/JSEN.2023.3283863
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article presents a framework for a pseudolinear Kalman filter (PLKF) based on the maximum correntropy criterion for the bearings-only target tracking problem in non-Gaussian environments. We first derive a pseudolinear maximum correntropy Kalman filter (PMCKF). To solve the offset problem, bias compensation is merged into PMCKF to realize bias-compensated PMCKF (BC-PMCKF). In the real scenario, the speed variation of the target is continuous during motion. Based on this premise, we implement the speed-constrained PMCKF (SC-PMCKF) algorithm in this framework, which suppresses the effect of impulsive noise on velocity estimation well. Finally, a posterior Cramer-Rao lower bound (PCRLB) under non-Gaussian noises is derived for the framework. Simulations and physical experiments show that the proposed estimation method is better than the traditional Kalman filter in non-Gaussian noise environments.
引用
收藏
页码:19524 / 19538
页数:15
相关论文
共 46 条
[1]   BIASED-ESTIMATION PROPERTIES OF THE PSEUDO-LINEAR TRACKING FILTER [J].
AIDALA, VJ ;
NARDONE, SC .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1982, 18 (04) :432-441
[2]   KALMAN FILTER BEHAVIOR IN BEARINGS-ONLY TRACKING APPLICATIONS [J].
AIDALA, VJ .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1979, 15 (01) :29-39
[3]   Bayesian WIV Estimators for 3-D Bearings-Only TMA With Speed Constraints [J].
Badriasl, Laleh ;
Arulampalam, Sanjeev ;
van der Hoek, John ;
Finn, Anthony .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (13) :3576-3591
[4]   Statistical Similarity Measure-Based Adaptive Outlier-Robust State Estimator With Applications [J].
Bai, Mingming ;
Huang, Yulong ;
Zhang, Yonggang ;
Chambers, Jonathon .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (08) :4354-4361
[5]   A Novel Heavy-Tailed Mixture Distribution Based Robust Kalman Filter for Cooperative Localization [J].
Bai, Mingming ;
Huang, Yulong ;
Zhang, Yonggang ;
Chen, Feng .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (05) :3671-3681
[6]   Maneuvering Target Tracking in the Presence of Glint using the Nonlinear Gaussian Mixture Kalman Filter [J].
Bilik, I. ;
Tabrikian, J. .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2010, 46 (01) :246-262
[7]   Maximum correntropy Kalman filter [J].
Chen, Badong ;
Liu, Xi ;
Zhao, Haiquan ;
Principe, Jose C. .
AUTOMATICA, 2017, 76 :70-77
[8]   Convergence of a Fixed-Point Algorithm under Maximum Correntropy Criterion [J].
Chen, Badong ;
Wang, Jianji ;
Zhao, Haiquan ;
Zheng, Nanning ;
Principe, Jose C. .
IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (10) :1723-1727
[9]   Efficient Ground Moving Target Imaging Method for Synthetic Aperture Radar With Target Azimuth Ambiguity [J].
Chen, Zhanye ;
Li, Li ;
Wan, Jun ;
Li, Dong ;
Tan, Xiaoheng .
IEEE SENSORS JOURNAL, 2021, 21 (20) :23297-23307
[10]   Robust Multitarget Tracking Scheme Based on Gaussian Mixture Probability Hypothesis Density Filter [J].
Choi, Mid-Eum ;
Seo, Seung-Woo .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2016, 65 (06) :4217-4229