Chloride salts/graphite foam composites prepared by vacuum impregnation with high thermal conductivity for medium temperature thermal energy storage

被引:8
作者
Lin, Zhiqiang [1 ,2 ]
Zhao, Zhongxing [2 ]
Song, Jinliang [1 ,4 ]
Tang, Zhongfeng [1 ,4 ]
Tao, Zechao [3 ,4 ]
Liu, Zhanjun [3 ,4 ]
Yin, Nan [4 ]
Shi, Quan [4 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
[2] Guangxi Univ, Sch Chem & Chem Engn, Nanning 530004, Peoples R China
[3] Chinese Acad Sci, Inst Coal Chem, Key Lab Carbon Mat, Taiyuan 030001, Peoples R China
[4] Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
Molten salt; Graphite foam; Thermal energy storage; Phase change materials; Thermal conductivity; PHASE-CHANGE MATERIALS;
D O I
10.1016/j.tsep.2023.102026
中图分类号
O414.1 [热力学];
学科分类号
摘要
Chloride salts are ideal phase change materials (PCMs) for thermal energy storage (TES), but low thermal conductivity and high corrosiveness limit their applications. The use of porous skeletal materials to encapsulate chloride salts is a promising approach to overcome the above-mentioned disadvantages. In this study, graphite foam (GF) was selected as the skeleton material, low melting point LiCl-NaCl-KCl-ZnCl2 eutectic salts (LES) was selected as the PCM, and LES/GF composites were prepared by vacuum impregnation. The thermal conductivity of LES/GF reached 29.0 W/(m center dot K) at 25 degrees C, which is 68.6 times higher than LES. The highly thermally conductive 3D network structure of GF results in enhanced thermal conductivity. The thermal properties and stability of LES/GF indicate that the LES/GF composites are promising materials for medium temperature thermal storage.
引用
收藏
页数:7
相关论文
共 37 条
  • [11] Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage
    Ji, Hengxing
    Sellan, Daniel P.
    Pettes, Michael T.
    Kong, Xianghua
    Ji, Junyi
    Shi, Li
    Ruoff, Rodney S.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (03) : 1185 - 1192
  • [12] Thermodynamic optimization of lithium chloride-potassium chloride-zinc chloride and lithium chloride-potassium chloride-magnesium chloride for thermal energy storage
    Kang, Zeyang
    Shi, Yaohui
    Liu, Hui
    Liu, Xiangyang
    He, Maogang
    [J]. JOURNAL OF ENERGY STORAGE, 2022, 53
  • [13] Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage
    Lin, Yaxue
    Jia, Yuting
    Alva, Guruprasad
    Fang, Guiyin
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 : 2730 - 2742
  • [14] A novel process for preparing molten salt/expanded graphite composite phase change blocks with good uniformity and small volume expansion
    Liu, Junwan
    Wang, Qianhao
    Ling, Ziye
    Fang, Xiaoming
    Zhang, Zhengguo
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 169 : 280 - 286
  • [15] Ni-Mo-Cr alloy corrosion in molten NaCl-KCl-MgCl2 salt and vapour
    Liu, Qi
    Wang, Zirui
    Liu, Weihua
    Yin, Huiqing
    Tang, Zhongfeng
    Qian, Yuan
    [J]. CORROSION SCIENCE, 2021, 180
  • [16] Performance of a medium temperature eutectic solder packed bed latent heat storage system for domestic applications
    Mawire, Ashmore
    Lefenya, Tlotlo M.
    Ekwomadu, Chidiebere S.
    Shobo, Adedamola B.
    [J]. JOURNAL OF ENERGY STORAGE, 2020, 28
  • [17] Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review
    Miro, Laia
    Gasia, Jaurne
    Cabeza, Luisa F.
    [J]. APPLIED ENERGY, 2016, 179 : 284 - 301
  • [18] Thermal performance enhancement of a new dual-PCM heat sink using two-objective optimization
    Mozafari, M.
    Lee, Ann
    [J]. THERMAL SCIENCE AND ENGINEERING PROGRESS, 2022, 33
  • [19] Thermal energy storage using chloride salts and their eutectics
    Myers, Philip D., Jr.
    Goswami, D. Yogi
    [J]. APPLIED THERMAL ENGINEERING, 2016, 109 : 889 - 900
  • [20] Thermal performance and economic evaluation of NaCl-CaCl2 eutectic salt for high-temperature thermal energy storage
    Tian, Heqing
    Wang, Weilong
    Ding, Jing
    Wei, Xiaolan
    [J]. ENERGY, 2021, 227