Unraveling the Origin of Donor-Like Effect in Bismuth-Telluride-Based Thermoelectric Materials

被引:23
作者
Liu, Feng [1 ]
Zhang, Min [1 ]
Nan, Pengfei [2 ]
Zheng, Xin [1 ]
Li, Yuzheng [1 ]
Wu, Kang [2 ]
Han, Zhongkang [1 ]
Ge, Binghui [2 ]
Zhao, Xinbing [1 ]
Fu, Chenguang [1 ]
Zhu, Tiejun [1 ,3 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon & Adv Semicond Mat, Hangzhou 310058, Peoples R China
[2] Anhui Univ, Inst Phys Sci & Informat Technol, Informat Mat & Intelligent Sensing Lab Anhui Prov, Key Lab Struct & Funct Regulat Hybrid Mat,Minist E, Hefei 230601, Peoples R China
[3] Shanxi Zheda Inst Adv Mat & Chem Engn, Taiyuan 030000, Shanxi, Peoples R China
来源
SMALL SCIENCE | 2025年 / 5卷 / 03期
关键词
bismuth-tellurides; donor-like effect; point defects; thermoelectric properties; DEFECTS; ALLOYS; DEFORMATION;
D O I
10.1002/smsc.202300082
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The donor-like effect, depicting the uncontrollable increase of electron density that can significantly alter the thermoelectric performance of both p-type and n-type polycrystalline Bi2Te3-based materials, has long been an intriguing phenomenon, while its origin is still elusive. Herein, it is found that different from the common argument, the donor-like effect in Bi2Te3-based polycrystals is a result of the oxygen-adsorption-induced evolution of the point defects. The dominant point defect in stoichiometric zone-melted Bi2Te3 ingot is the acceptor-like Bi & PRIME;Te. During the fabrication of high-strength polycrystals, the exposure of the powders to the air leads to their absorption of oxygen and the formation of secondary phase Bi2TeO5 in the following sintering process. This brings about a change of local chemical equilibrium and promotes the evolution of the intrinsic point defect from acceptor-like Bi & PRIME;Te to donor-like TeBi & BULL;. Notably, if the fabrication process is strictly controlled to minimize oxygen adsorption, the evolution of the point defects will be avoided, whereby the donor-like effect disappears. Consequently, a reproducible high zT value of 1.0 at 325 K can be achieved in Bi2Te2.7Se0.3-based polycrystals. These results highlight the importance of understanding the evolution of point defects, which is crucial for developing high-performance Bi2Te3-based polycrystals and corresponding fabrication processes.
引用
收藏
页数:11
相关论文
共 41 条
[21]   Thermoelectric properties of the hot-pressed (Bi,Sb)2(Te,Se)3 alloys [J].
Oh, TS ;
Hyun, DB ;
Kolomoets, NV .
SCRIPTA MATERIALIA, 2000, 42 (09) :849-854
[22]   Electrical and thermal transport properties of spark plasma sintered n-type Bi2Te3-xSex alloys: the combined effect of point defect and Se content [J].
Pan, Yu ;
Wei, Tian-Ran ;
Wu, Chao-Feng ;
Li, Jing-Feng .
JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (40) :10583-10589
[23]   3D Printing of highly textured bulk thermoelectric materials: mechanically robust BiSbTe alloys with superior performance [J].
Qiu, Junhao ;
Yan, Yonggao ;
Luo, Tingting ;
Tang, Kechen ;
Yao, Lei ;
Zhang, Jian ;
Zhang, Min ;
Su, Xianli ;
Tan, Gangjian ;
Xie, Hongyao ;
Kanatzidis, Mercouri G. ;
Uher, Ctirad ;
Tang, Xinfeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (10) :3106-3117
[24]   ELECTRICAL AND THERMAL PROPERTIES OF BI2TE3 [J].
SATTERTHWAITE, CB ;
URE, RW .
PHYSICAL REVIEW, 1957, 108 (05) :1164-1170
[25]   EFFECTS OF HEAVY DEFORMATION AND ANNEALING ON ELECTRICAL PROPERTIES OF BI2TE3 [J].
SCHULTZ, JM ;
TILLER, WA ;
MCHUGH, JP .
JOURNAL OF APPLIED PHYSICS, 1962, 33 (08) :2443-&
[26]   ANTISITE DEFECTS IN SB2-XBIXTE3 MIXED-CRYSTALS [J].
STARY, Z ;
HORAK, J ;
STORDEUR, M ;
STOLZER, M .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1988, 49 (01) :29-34
[27]   A comprehensive review on Bi2Te3-based thin films: Thermoelectrics and beyond [J].
Tang, Xinfeng ;
Li, Ziwei ;
Liu, Wei ;
Zhang, Qingjie ;
Uher, Ctirad .
INTERDISCIPLINARY MATERIALS, 2022, 1 (01) :88-115
[28]   Removing the Oxygen-Induced Donor-like Effect for High Thermoelectric Performance in n-Type Bi2Te3-Based Compounds [J].
Tao, Qirui ;
Wu, Huijuan ;
Pan, Wenfeng ;
Zhang, Zhengkai ;
Tang, Yinfei ;
Wu, Yutian ;
Fan, Renjie ;
Chen, Zhiquan ;
Wu, Jinsong ;
Su, Xianli ;
Tang, Xinfeng .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (50) :60216-60226
[29]   Technologies and perspectives for achieving carbon neutrality [J].
Wang, Fang ;
Harindintwali, Jean Damascene ;
Yuan, Zhizhang ;
Wang, Min ;
Wang, Faming ;
Li, Sheng ;
Yin, Zhigang ;
Huang, Lei ;
Fu, Yuhao ;
Li, Lei ;
Chang, Scott X. ;
Zhang, Linjuan ;
Rinklebe, Jorg ;
Yuan, Zuoqiang ;
Zhu, Qinggong ;
Xiang, Leilei ;
Tsang, Daniel C. W. ;
Xu, Liang ;
Jiang, Xin ;
Liu, Jihua ;
Wei, Ning ;
Kastner, Matthias ;
Zou, Yang ;
Ok, Yong Sik ;
Shen, Jianlin ;
Peng, Dailiang ;
Zhang, Wei ;
Barcelo, Damia ;
Zhou, Yongjin ;
Bai, Zhaohai ;
Li, Boqiang ;
Zhang, Bin ;
Wei, Ke ;
Cao, Hujun ;
Tan, Zhiliang ;
Zhao, Liu-bin ;
He, Xiao ;
Zheng, Jinxing ;
Bolan, Nanthi ;
Liu, Xiaohong ;
Huang, Changping ;
Dietmann, Sabine ;
Luo, Ming ;
Sun, Nannan ;
Gong, Jirui ;
Gong, Yulie ;
Brahushi, Ferdi ;
Zhang, Tangtang ;
Xiao, Cunde ;
Li, Xianfeng .
INNOVATION, 2021, 2 (04)
[30]  
Wang SY, 2012, J MATER CHEM, V22, P20943, DOI [10.1039/c2jmu34608g, 10.1039/c2jm34608g]