SSM: Stylometric and semantic similarity oriented multimodal fake news detection

被引:8
|
作者
Nadeem, Muhammad Imran [1 ]
Ahmed, Kanwal [1 ]
Zheng, Zhiyun [1 ]
Li, Dun [1 ]
Assam, Muhammad [2 ]
Ghadi, Yazeed Yasin [3 ]
Alghamedy, Fatemah H. [4 ]
Eldin, Elsayed Tag [5 ]
机构
[1] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou 450001, Peoples R China
[2] Univ Sci & Technol Bannu, Dept Software Engn, Kp, Pakistan
[3] Al Ain Univ, Dept Comp Sci, Al Ain, U Arab Emirates
[4] Imam Abdulrahman Bin Faisal Univ, Appl Coll, Dept Comp, Dammam, Saudi Arabia
[5] Future Univ Egypt, Fac Engn & Technol, New Cairo 11835, Egypt
关键词
Fake news detection; Deep learning; Natural language processing; Mulltimodal; Stylometric features; Semantic features; FRAMEWORK; MODEL;
D O I
10.1016/j.jksuci.2023.101559
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Over the years, there has been a rise in the number of fabricated and fake news stories that utilize both textual and visual information formats. This coincides with the increased likelihood that users will acquire their news from websites and social media platforms. While there has been various research into the detection of fake news in text using machine learning techniques, less attention has been paid to the problem of multimedia data fabrication. In this paper, we propose a Stylometric, and Semantic similarity oriented for Multimodal Fake News Detection (SSM). There are five distinct modules that make up our methodology: Firstly, we used a Hyperbolic Hierarchical Attention Network (Hype-HAN) for extracting stylometric textual features. Secondly, we generated the news content summary and computed the sim-ilarity between Headline and summary. Thirdly, semantic similarity is computed between visual and tex-tual features. Fourthly, images are analyzed for forgery. Lastly, the extracted features are fused for final classification. We have tested SSM framework on three standard fake news datasets. The results indicated that our suggested model has outperformed the base line and state-of-the-art methods and is more likely to detect fake news in complex environments.& COPY; 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Semantic Fake News Detection: A Machine Learning Perspective
    Brasoveanu, Adrian M. P.
    Andonie, Razvan
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2019, PT I, 2019, 11506 : 656 - 667
  • [22] A comprehensive overview of fake news detection on social networks
    Sharma, Upasna
    Singh, Jaswinder
    SOCIAL NETWORK ANALYSIS AND MINING, 2024, 14 (01)
  • [23] Explore the Style for Fake News Detection
    Wilbert
    Yang, Hui-kuo
    Peng, Wen-chih
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2024, 40 (06) : 1349 - 1361
  • [24] A Review of Deep Learning Techniques for Multimodal Fake News and Harmful Languages Detection
    Festus Ayetiran, Eniafe
    Ozgobek, Ozlem
    IEEE ACCESS, 2024, 12 : 76133 - 76153
  • [25] Multimodal Emergent Fake News Detection via Meta Neural Process Networks
    Wang, Yaqing
    Ma, Fenglong
    Wang, Haoyu
    Jha, Kishlay
    Gao, Jing
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 3708 - 3716
  • [26] A Stylometric Approach for Reliable News Detection Using Machine Learning Methods
    Abeynayake, A. D. L.
    Sunethra, A. A.
    Deshani, K. A. D.
    2022 22ND INTERNATIONAL CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER), 2022,
  • [27] Multimodal Fusion with BERT and Attention Mechanism for Fake News Detection
    Nguyen Manh Duc Tuan
    Pham Quang Nhat Minh
    2021 RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES (RIVF 2021), 2021, : 43 - 48
  • [28] Multimodal Fake News Detection with Contrastive Learning and Optimal Transport
    Shen, Xiaorong
    Huang, Maowei
    Hu, Zheng
    Cai, Shimin
    Zhou, Tao
    FRONTIERS IN COMPUTER SCIENCE, 2024, 6
  • [29] Potential Features Fusion Network for Multimodal Fake News Detection
    Kou, Feifei
    Wang, Bingwei
    Li, Haisheng
    Zhu, Chuangying
    Shi, Lei
    Zhang, Jiwei
    Qi, Limei
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2025, 21 (03)
  • [30] Multimodal fake news detection via progressive fusion networks
    Jing, Jing
    Wu, Hongchen
    Sun, Jie
    Fang, Xiaochang
    Zhang, Huaxiang
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (01)