Bouligand nanocomposites: Self-assembly of cellulose nanocrystals with a thermo-responsive polymer

被引:5
作者
Vu, Huyen [1 ]
Woodcock, Jeremiah W. [2 ]
Krishnamurthy, Ajay [2 ]
Obrzut, Jan [2 ]
Gilman, Jeffrey W. [2 ,3 ]
Coughlin, Bryan [1 ]
机构
[1] Univ Massachusetts Amherst, Dept Polymer Sci & Engn, Amherst, MA 01003 USA
[2] Natl Inst Stand & Technol, Mat Sci & Engn Div, Gaithersburg, MD USA
[3] Lamtec Corp, 5010 River Rd, Mt Bethel, PA 18343 USA
关键词
Cellulose nanocrystals; Bouligand; Composites; Thermo-responsive polymer; Photonics; Self-assembly; 2-(2-METHOXYETHOXY)ETHYL METHACRYLATE; IRIDESCENT; FILMS; COLORATION; BRUSHES; WATER;
D O I
10.1016/j.polymer.2023.126117
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Cellulose nanocrystals (CNCs) naturally self-assemble into helical structures that effectively deflect crack propagation and exhibit structural coloration based on the pitch. To further tune the structural coloration via environmental conditions, a thermoresponsive polymer poly(diethylene glycol methyl methacrylate) (PMEO2MA) was incorporated into CNC composites. Nanocomposite films of PMEO2MA-CNC with 0-30 mass % PMEO2MA loadings were prepared via controlled evaporation-induced self-assembly. As the polymer infiltrates CNCs' helical structure, the resulting films' reflectance wavelength transitions from blue to red. PMEO2MA-CNC nanocomposites exhibited reversible temperature responses in the solid-state between 26 degrees C and 29 degrees C under variable humidity conditions, demonstrating the tunability of the self-assembled films. Fluorescence lifetime imaging microscopy (FLIM) provided insights to polymer dynamics in response to temperature.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Plasticized starch/tunicin whiskers nanocomposite materials.: 2.: Mechanical behavior [J].
Anglès, MN ;
Dufresne, A .
MACROMOLECULES, 2001, 34 (09) :2921-2931
[2]   Nanoscale Cellulose Films with Different Crystallinities and Mesostructures-Their Surface Properties and Interaction with Water [J].
Aulin, Christian ;
Ahola, Susanna ;
Josefsson, Peter ;
Nishino, Takashi ;
Hirose, Yasuo ;
Osterberg, Monika ;
Wagberg, Lars .
LANGMUIR, 2009, 25 (13) :7675-7685
[3]   Tunable Aggregation and Gelation of Thermoresponsive Suspensions of Polymer-Grafted Cellulose Nanocrystals [J].
Azzam, Firas ;
Siqueira, Eder ;
Fort, Sebastien ;
Hassaini, Roumaissa ;
Pignon, Frederic ;
Travelet, Christophe ;
Putaux, Jean-Luc ;
Jean, Bruno .
BIOMACROMOLECULES, 2016, 17 (06) :2112-2119
[4]   Flexibility and Color Monitoring of Cellulose Nanocrystal Iridescent Solid Films Using Anionic or Neutral Polymers [J].
Bardet, Raphael ;
Belgacem, Naceur ;
Bras, Julien .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (07) :4010-4018
[5]  
Barkla C.G., 1930, J SCI INSTRUM, V7, P34
[6]   Structure and mechanical properties of crab exoskeletons [J].
Chen, Po-Yu ;
Lin, Albert Yu-Min ;
McKittrick, Joanna ;
Meyers, Marc Andre .
ACTA BIOMATERIALIA, 2008, 4 (03) :587-596
[7]   Multiple-Stimuli-Responsive and Cellulose Conductive Ionic Hydrogel for Smart Wearable Devices and Thermal Actuators [J].
Chen, Zhen ;
Liu, Jing ;
Chen, Yujie ;
Zheng, Xu ;
Liu, Hezhou ;
Li, Hua .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (01) :1353-1366
[8]   Stimuli-Responsive nanocellulose Hydrogels: An overview [J].
Deng, Yuqing ;
Xi, Jianfeng ;
Meng, Liucheng ;
Lou, Yanling ;
Seidi, Farzad ;
Wu, Weibing ;
Xiao, Huining .
EUROPEAN POLYMER JOURNAL, 2022, 180
[9]   Cellulose nanocrystal-poly(oligo(ethylene glycol) methacrylate) brushes with tunable LCSTsNathan [J].
Grishkewich, Nathan ;
Akhlaghi, Seyedeh Parinaz ;
Yao, Zhaoling ;
Berry, Richard ;
Tam, Kam C. .
CARBOHYDRATE POLYMERS, 2016, 144 :215-222
[10]   Crustacean-Derived Biomimetic Components and Nanostructured Composites [J].
Grunenfelder, Lessa Kay ;
Herrera, Steven ;
Kisailus, David .
SMALL, 2014, 10 (16) :3207-3232