Application of Time-Frequency Analysis in Rotating Machinery Fault Diagnosis

被引:16
|
作者
Bai, Yihao [1 ]
Cheng, Weidong [1 ]
Wen, Weigang [1 ]
Liu, Yang [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Mech Elect & Control Engn, Beijing 100044, Peoples R China
关键词
TURBINE PLANETARY GEARBOX; EMPIRICAL MODE DECOMPOSITION; VOLD-KALMAN FILTER; SYNCHROSQUEEZING TRANSFORM; FEATURE-EXTRACTION; WAVELET TRANSFORM; SPEED CONDITIONS; BEARINGS; SIGNAL; REPRESENTATIONS;
D O I
10.1155/2023/9878228
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Fault diagnosis is an important means to ensure the safe and reliable operation of mechanical equipment. In machinery fault diagnosis, collecting and mining the potential fault information of the vibration signal is the most commonly used method to reflect the operating status of the equipment. In engineering scenarios, in the face of rotating machinery with variable speed, simple time domain analysis or frequency domain analysis is difficult to solve the problem. The time-frequency analysis technology that combines time-frequency transformation and data analysis can solve practical engineering problems by capturing the transient information of the signal. At present, a large number of related literatures have been published in academic journals. This paper hopes to provide convenience for relevant researchers and motivate researchers to further explore by summarizing the published literature. First, this paper briefly explains the concept of time-frequency analysis and its development. Then, the time-frequency transformation method proposed for the characteristics of rotating machinery fault vibration signal and related works of literature are reviewed, and the key issues of the application of time-frequency transformation method in rotating machinery fault diagnosis are discussed. Next, this paper summarizes the relevant literature on the combination of data analysis technology and time-frequency transformation and sorts out its development route and prospects. The study reveals that time-frequency analysis technology is able to detect the rotating machinery fault effectively. The time-frequency analysis technology has made abundant achievements in the field of rotating machinery fault diagnosis. It is expected that this review would inspire researchers to explore the potential of time-frequency analysis as well as to develop advanced research in this field.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Transient Feature Extraction Based on Time-Frequency Manifold Image Synthesis for Machinery Fault Diagnosis
    Ding, Xiaoxi
    He, Qingbo
    Shao, Yimin
    Huang, Wenbin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2019, 68 (11) : 4242 - 4252
  • [32] A Review of Early Fault Diagnosis Approaches and Their Applications in Rotating Machinery
    Wei, Yu
    Li, Yuqing
    Xu, Minqiang
    Huang, Wenhu
    ENTROPY, 2019, 21 (04)
  • [33] A review on empirical mode decomposition in fault diagnosis of rotating machinery
    Lei, Yaguo
    Lin, Jing
    He, Zhengjia
    Zuo, Ming J.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 35 (1-2) : 108 - 126
  • [34] A method for intelligent fault diagnosis of rotating machinery
    Chen, CZ
    Mo, CT
    DIGITAL SIGNAL PROCESSING, 2004, 14 (03) : 203 - 217
  • [35] Demodulated Multisynchrosqueezing S Transform for Fault Diagnosis of Rotating Machinery
    Liu, Wei
    Liu, Yang
    Li, Shuangxi
    IEEE SENSORS JOURNAL, 2022, 22 (21) : 20773 - 20784
  • [36] Machinery fault diagnosis based on time-frequency images and label consistent K-SVD
    Yuan, H. D.
    Chen, J.
    Dong, G. M.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2018, 232 (07) : 1317 - 1330
  • [37] Application of the EEMD method to rotor fault diagnosis of rotating machinery
    Lei, Yaguo
    He, Zhengjia
    Zi, Yanyang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (04) : 1327 - 1338
  • [38] Application of Rotating Machinery Fault Diagnosis Based on Deep Learning
    Cui, Wei
    Meng, Guoying
    Wang, Aiming
    Zhang, Xinge
    Ding, Jun
    SHOCK AND VIBRATION, 2021, 2021
  • [39] Application of Time-frequency Analysis and Neural Network in Fault Diagnosis System of Aero-engine
    Wang Huaying
    Han Rui
    Liu Jingbo
    PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON TEST AUTOMATION & INSTRUMENTATION, VOL. 3, 2008, : 1599 - 1602
  • [40] Rotating Machinery Fault Diagnosis Under Time-Varying Speeds: A Review
    Liu, Dongdong
    Cui, Lingli
    Wang, Huaqing
    IEEE SENSORS JOURNAL, 2023, 23 (24) : 29969 - 29990