Parameter Estimation of Fractional Wiener Systems with the Application of Photovoltaic Cell Models

被引:2
作者
Zhang, Ce [1 ]
Meng, Xiangxiang [2 ]
Ji, Yan [2 ]
机构
[1] Yantai Vocat Coll, Yantai 264670, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China
基金
中国国家自然科学基金;
关键词
gradient search; forgetting factor; multi-innovation theory; fractional-order system; dynamic photovoltaic model; ESTIMATION ALGORITHMS; NONLINEAR PROCESSES; FAULT-DIAGNOSIS; IDENTIFICATION; OPTIMIZATION; GRADIENT; TRACKING; DELAY;
D O I
10.3390/math11132945
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractional differential equations are used to construct mathematical models and can describe the characteristics of real systems. In this paper, the parameter estimation problem of a fractional Wiener system is studied by designing linear filters which can obtain smaller tunable parameters and maintain the stability of the parameters in any case. To improve the identification performance of the stochastic gradient algorithm, this paper derives two modified stochastic gradient algorithms for the fractional nonlinear Wiener systems with colored noise. By introducing the forgetting factor, a forgetting factor stochastic gradient algorithm is deduced to improve the convergence rate. To achieve more efficient and accurate algorithms, we propose a multi-innovation forgetting factor stochastic gradient algorithm by means of the multi-innovation theory, which expands the scalar innovation into the innovation vector. To test the developed algorithms, a fractional-order dynamic photovoltaic model is employed in the simulation, and the dynamic elements of this photovoltaic model are estimated using the modified algorithms. Concurrently, a numerical example is given, and the simulation results verify the feasibility and effectiveness of the proposed procedures.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Parameter Estimation Algorithms for Hammerstein-Wiener Systems With Autoregressive Moving Average Noise
    Wang, Yanjiao
    Ding, Feng
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (03):
  • [42] Recursive parameter estimation for Hammerstein-Wiener systems using modified EKF algorithm
    Yu, Feng
    Mao, Zhizhong
    Yuan, Ping
    He, Dakuo
    Jia, Mingxing
    ISA TRANSACTIONS, 2017, 70 : 104 - 115
  • [43] A novel way of parameter estimation of solar photovoltaic system
    Bisht, Rahul
    Sikander, Afzal
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 41 (01) : 471 - 498
  • [44] A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models
    Kang, Tong
    Yao, Jiangang
    Jin, Min
    Yang, Shengjie
    Duong, ThanhLong
    ENERGIES, 2018, 11 (05)
  • [45] Photovoltaic models parameter estimation via an enhanced Rao-1 algorithm
    Ku, Junhua
    Li, Shuijia
    Gong, Wenyin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (02) : 1128 - 1153
  • [46] Laplacian Nelder-Mead spherical evolution for parameter estimation of photovoltaic models
    Weng, Xuemeng
    Heidari, Ali Asghar
    Liang, Guoxi
    Chen, Huiling
    Ma, Xinsheng
    Mafarja, Majdi
    Turabieh, Hamza
    ENERGY CONVERSION AND MANAGEMENT, 2021, 243
  • [47] Parameter estimation of photovoltaic cell model with Rao-1 algorithm
    Wang, Long
    Wang, Zhongju
    Liang, Huazhao
    Huang, Chao
    OPTIK, 2020, 210
  • [48] Enhanced chaotic JAYA algorithm for parameter estimation of photovoltaic cell/modules
    Premkumar, M.
    Jangir, Pradeep
    Sowmya, R.
    Elavarasan, Rajvikram Madurai
    Kumar, B. Santhosh
    ISA TRANSACTIONS, 2021, 116 : 139 - 166
  • [49] Photovoltaic cell parameter estimation based on improved equilibrium optimizer algorithm
    Wang, Jingbo
    Yang, Bo
    Li, Danyang
    Zeng, Chunyuan
    Chen, Yijun
    Guo, Zhengxun
    Zhang, Xiaoshun
    Tan, Tian
    Shu, Hongchun
    Yu, Tao
    ENERGY CONVERSION AND MANAGEMENT, 2021, 236
  • [50] System identification of MISO fractional systems: Parameter and differentiation order estimation
    Victor, Stephane
    Mayoufi, Abir
    Malti, Rachid
    Chetoui, Manel
    Aoun, Mohamed
    AUTOMATICA, 2022, 141