Parameter Estimation of Fractional Wiener Systems with the Application of Photovoltaic Cell Models

被引:2
作者
Zhang, Ce [1 ]
Meng, Xiangxiang [2 ]
Ji, Yan [2 ]
机构
[1] Yantai Vocat Coll, Yantai 264670, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China
基金
中国国家自然科学基金;
关键词
gradient search; forgetting factor; multi-innovation theory; fractional-order system; dynamic photovoltaic model; ESTIMATION ALGORITHMS; NONLINEAR PROCESSES; FAULT-DIAGNOSIS; IDENTIFICATION; OPTIMIZATION; GRADIENT; TRACKING; DELAY;
D O I
10.3390/math11132945
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractional differential equations are used to construct mathematical models and can describe the characteristics of real systems. In this paper, the parameter estimation problem of a fractional Wiener system is studied by designing linear filters which can obtain smaller tunable parameters and maintain the stability of the parameters in any case. To improve the identification performance of the stochastic gradient algorithm, this paper derives two modified stochastic gradient algorithms for the fractional nonlinear Wiener systems with colored noise. By introducing the forgetting factor, a forgetting factor stochastic gradient algorithm is deduced to improve the convergence rate. To achieve more efficient and accurate algorithms, we propose a multi-innovation forgetting factor stochastic gradient algorithm by means of the multi-innovation theory, which expands the scalar innovation into the innovation vector. To test the developed algorithms, a fractional-order dynamic photovoltaic model is employed in the simulation, and the dynamic elements of this photovoltaic model are estimated using the modified algorithms. Concurrently, a numerical example is given, and the simulation results verify the feasibility and effectiveness of the proposed procedures.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Heterogeneous differential evolution algorithm for parameter estimation of solar photovoltaic models
    Wang, Da
    Sun, Xingping
    Kang, Hongwei
    Shen, Yong
    Chen, Qingyi
    ENERGY REPORTS, 2022, 8 : 4724 - 4746
  • [32] Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models
    Jiao, Shan
    Chong, Guoshuang
    Huang, Changcheng
    Hu, Hanqing
    Wang, Mingjing
    Heidari, Ali Asghar
    Chen, Huiling
    Zhao, Xuehua
    ENERGY, 2020, 203
  • [33] Parameter estimation of photovoltaic models using an improved marine predators algorithm
    Abdel-Basset, Mohamed
    El-Shahat, Doaa
    Chakrabortty, Ripon K.
    Ryan, Michael
    ENERGY CONVERSION AND MANAGEMENT, 2021, 227
  • [34] Differential evolution with dynamic control factors for parameter estimation of photovoltaic models
    Parida, Shubhranshu Mohan
    Rout, Pravat Kumar
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2021, 20 (01) : 330 - 343
  • [35] An innovative parameter estimation for fractional order systems impulse noise
    Cui, Rongzhi
    Wei, Yiheng
    Cheng, Songsong
    Wang, Yong
    ISA TRANSACTIONS, 2018, 82 : 120 - 129
  • [36] Parameter and delay estimation of fractional order models from step response
    Ahmed, Salim
    IFAC PAPERSONLINE, 2015, 48 (08): : 942 - 947
  • [37] Analytical Insights Into Parameter Estimation for Wiener Deconvolution
    Gupta, Ashish
    Reddy, Chandupatla Chakradhar
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (10) : 2566 - 2575
  • [38] Novel design of weighted differential evolution for parameter estimation of Hammerstein-Wiener systems
    Mehmood, Ammara
    Raja, Muhammad Asif Zahoor
    JOURNAL OF ADVANCED RESEARCH, 2023, 43 : 123 - 136
  • [39] Recursive parameter estimation for Hammerstein-Wiener systems using modified EKF algorithm
    Yu, Feng
    Mao, Zhizhong
    Yuan, Ping
    He, Dakuo
    Jia, Mingxing
    ISA TRANSACTIONS, 2017, 70 : 104 - 115
  • [40] A novel approach to parameter estimation of photovoltaic systems using hybridized optimizer
    Kler, Dhruv
    Goswami, Yagyadatta
    Rana, K. P. S.
    Kumar, Vineet
    ENERGY CONVERSION AND MANAGEMENT, 2019, 187 : 486 - 511