Conventional and artificial intelligence-based computed tomography and magnetic resonance imaging quantitative techniques for non-invasive liver fibrosis staging

被引:5
作者
Zheng, Shuang [1 ]
He, Kan [1 ]
Zhang, Lei [1 ]
Li, Mingyang [1 ]
Zhang, Huimao [1 ]
Gao, Pujun [2 ]
机构
[1] First Hosp Jilin Univ, Dept Radiol, 71 Xinmin St, Changchun, Jilin, Peoples R China
[2] First Hosp Jilin Univ, Dept Hepatol, 71 Xinmin St, Changchun, Jilin, Peoples R China
关键词
Artificial intelligence; Chronic liver disease; Liver fibrosis staging; CT; MRI; SURFACE NODULARITY QUANTIFICATION; HEPATIC PERFUSION PARAMETERS; CONTRAST-ENHANCED CT; MR ELASTOGRAPHY; VIRTUAL ELASTOGRAPHY; DIFFUSION; DIAGNOSIS; CIRRHOSIS; BIOMARKER; SEVERITY;
D O I
10.1016/j.ejrad.2023.110912
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Chronic liver disease (CLD) ultimately develops into liver fibrosis and cirrhosis and is a major public health problem globally. The assessment of liver fibrosis is important for patients with CLD for prognostication, treatment decisions, and surveillance. Liver biopsies are traditionally performed to determine the stage of liver fibrosis. However, the risks of complications and technical limitations restrict their application to screening and sequential monitoring in clinical practice. CT and MRI are essential for evaluating cirrhosis-associated complications in patients with CLD, and several non-invasive methods based on them have been proposed. Artificial intelligence (AI) techniques have also been applied to stage liver fibrosis. This review aimed to explore the values of conventional and AI-based CT and MRI quantitative techniques for non-invasive liver fibrosis staging and summarized their diagnostic performance, advantages, and limitations.
引用
收藏
页数:11
相关论文
共 50 条
[41]   Non-invasive assessment and visualization of Phytophthora cactorum infection in strawberry crowns using quantitative magnetic resonance imaging [J].
Tuomainen, Teemu Valtteri ;
Toljamo, Anna ;
Kokko, Harri ;
Nissi, Mikko Johannes .
SCIENTIFIC REPORTS, 2024, 14 (01)
[42]   Artificial intelligence assisted whole organ pancreatic fat estimation on magnetic resonance imaging and correlation with pancreas attenuation on computed tomography [J].
Janssens, Laurens P. ;
Takahashi, Hiroaki ;
Nagayama, Hiroki ;
Nugen, Fred ;
Bamlet, William R. ;
Oberg, Ann L. ;
Fuemmeler, Eric ;
Goenka, Ajit H. ;
Erickson, Bradley J. ;
Takahashi, Naoki ;
Majumder, Shounak .
PANCREATOLOGY, 2023, 23 (05) :556-562
[43]   A predictive model of radiation-related fibrosis based on the radiomic features of magnetic resonance imaging and computed tomography [J].
Wang, Jian ;
Liu, Rongjie ;
Zhao, Yu ;
Nantavithya, Chonnipa ;
Elhalawani, Hesham ;
Zhu, Hongtu ;
Mohamed, Abdallah Sherif Radwan ;
Fuller, Clifton David ;
Kannarunimit, Danita ;
Yang, Pei ;
Zhu, Hong .
TRANSLATIONAL CANCER RESEARCH, 2020, 9 (08) :4726-4738
[44]   Challenges and opportunities in the development and clinical implementation of artificial intelligence based synthetic computed tomography for magnetic resonance only radiotherapy [J].
Villegas, Fernanda ;
Dal Bello, Riccardo ;
Alvarez-Andres, Emilie ;
Dhont, Jennifer ;
Janssen, Tomas ;
Milan, Lisa ;
Robert, Charlotte ;
Salagean, Ghizela-Ana-Maria ;
Tejedor, Natalia ;
Trnkova, Petra ;
Fusella, Marco ;
Placidi, Lorenzo ;
Cusumano, Davide .
RADIOTHERAPY AND ONCOLOGY, 2024, 198
[45]   Magnetic resonance imaging as a non-invasive method for the assessment of pancreatic fibrosis (MINIMAP): a comprehensive study design from the consortium for the study of chronic pancreatitis, diabetes, and pancreatic cancer [J].
Tirkes, Temel ;
Yadav, Dhiraj ;
Conwell, Darwin L. ;
Territo, Paul R. ;
Zhao, Xuandong ;
Venkatesh, Sudhakar K. ;
Kolipaka, Arunark ;
Li, Liang ;
Pisegna, Joseph R. ;
Pandol, Stephen J. ;
Park, Walter G. ;
Topazian, Mark ;
Serrano, Jose ;
Fogel, Evan L. .
ABDOMINAL RADIOLOGY, 2019, 44 (08) :2809-2821
[46]   Role of EUS in detection of liver metastasis not seen by computed tomography or magnetic resonance imaging during staging of pancreatic, gastrointestinal, and thoracic malignancies [J].
Okasha, Hussein Hassan ;
Wifi, Mohamed-Naguib ;
Awad, Abeer ;
Abdelfatah, Yasmine ;
Abdelfatah, Dalia ;
El-Sawy, Shereen ;
Alzamzamy, Ahmed ;
Abou-Elenin, Sameh ;
Abou-Elmagd, Amr ;
ElHusseiny, Ramy ;
Wahba, Mahmoud ;
El-Feki, Mohamed A. ;
Pawlak, Katarzyna M. .
ENDOSCOPIC ULTRASOUND, 2021, 10 (05) :344-354
[47]   Preoperative lymph-node staging of invasive urothelial bladder cancer with 18F-fluorodeoxyglucose positron emission tomography/computed axial tomography and magnetic resonance imaging: Correlation with histopathology [J].
Jensen, Thor Knak ;
Holt, Per ;
Gerke, Oke ;
Riehmann, Morten ;
Svolgaard, Birgitte ;
Marcussen, Niels ;
Bouchelouche, Kirsten .
SCANDINAVIAN JOURNAL OF UROLOGY AND NEPHROLOGY, 2011, 45 (02) :122-128
[48]   Non-invasive assessment of liver fibrosis in autoimmune hepatitis: Diagnostic value of liver magnetic resonance parametric mapping including extracellular volume fraction [J].
Mesropyan, Narine ;
Kupczyk, Patrick ;
Dold, Leona ;
Weismueller, Tobias J. ;
Sprinkart, Alois M. ;
Maedler, Burkhart ;
Pieper, Claus C. ;
Kuetting, Daniel ;
Strassburg, Christian P. ;
Attenberger, Ulrike ;
Luetkens, Julian A. .
ABDOMINAL RADIOLOGY, 2021, 46 (06) :2458-2466
[49]   Combining 99mTc-GSA single-photon emission-computed tomography and Gd-EOB-DTPA-enhanced magnetic resonance imaging for staging liver fibrosis [J].
Tokorodani, Ryotaro ;
Kume, Toshiaki ;
Daisaki, Hiromitu ;
Hayashi, Naoya ;
Iwasa, Hitomi ;
Yamagami, Takuji .
MEDICINE, 2023, 102 (07) :E32975
[50]   Artificial intelligence-enhanced magnetic resonance imaging-based pre-operative staging in patients with endometrial cancer [J].
Lecointre, Lise ;
Alekseenko, Julia ;
Pavone, Matteo ;
Karargyris, Alexandros ;
Fanfani, Francesco ;
Fagotti, Anna ;
Scambia, Giovanni ;
Querleu, Denis ;
Akladios, Cherif ;
Dana, Jeremy ;
Padoy, Nicolas .
INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2025, 35 (01)