Hierarchical Random Access Coding for Deep Neural Video Compression

被引:2
|
作者
Thang, Nguyen Van [1 ,2 ]
Bang, Le Van [1 ]
机构
[1] Viettel High Technol Ind Corp, AI Camera Ctr, Hanoi 100000, Vietnam
[2] VinUniv, Coll Engn & Comp Sci, Hanoi 10000, Vietnam
关键词
Image coding; Encoding; Video compression; Interpolation; Video coding; Delays; Bit rate; Random access memory; Neural video compression; hierarchical random access coding; video frame interpolation;
D O I
10.1109/ACCESS.2023.3283277
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, neural video compression networks have obtained impressive results. However, previous neural video compression models mostly focus on low-delay configuration with the order of display being the same as the order of coding. In this paper, we propose a hierarchical random access coding approach that exploits bidirectionally temporal redundancy to improve the coding efficiency of existing deep neural video compression models. The proposed framework applies a video frame interpolation network to improve inter-frame prediction. In addition, a hierarchical coding structure is also proposed in this paper. Experimental results show the proposed framework improves the coding efficiency of the base deep neural model by 48.01% with the UVG dataset, 50.96% with the HEVC-class B dataset, and outperforms the previous deep neural video compression networks.
引用
收藏
页码:57494 / 57502
页数:9
相关论文
共 50 条
  • [41] Versatile Video Coding-Based Coding Tree Unit Level Image Compression With Dual Quantization Parameters for Hybrid Vision
    Kim, Shin
    Lee, Yegi
    Yoon, Kyoungro
    IEEE ACCESS, 2023, 11 : 34498 - 34509
  • [42] HIERARCHICAL VIDEO CODING SCHEME WITH SCALABILITY AND COMPATIBILITY
    HANAMURA, T
    SEKIGUCHI, SI
    KAMEYAMA, W
    TOMINAGA, H
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART I-COMMUNICATIONS, 1994, 77 (03): : 25 - 40
  • [43] Insights From Generative Modeling for Neural Video Compression
    Yang, Ruihan
    Yang, Yibo
    Marino, Joseph
    Mandt, Stephan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 9908 - 9921
  • [44] Optimal Reference Selection for Random Access in Predictive Coding Schemes
    Pham, Mai-Quyen
    Roumy, Aline
    Maugey, Thomas
    Dupraz, Elsa
    Kieffer, Michel
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (09) : 5819 - 5833
  • [45] Coefficient Sign Bit Compression in Video Coding
    Koyama, Jumpei
    Yamori, Akihiro
    Kazui, Kimihiko
    Shimada, Satoshi
    Nakagawa, Akira
    2012 PICTURE CODING SYMPOSIUM (PCS), 2012, : 385 - 388
  • [46] Improving the Compression Efficiency for Transform Video Coding
    Lin, Jianyu
    2017 4TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2017, : 1313 - 1318
  • [47] Role of Nanotechnology in Lossless Video Compression Coding
    Loukil, H.
    Abbas, M.
    Algahtani, Ali
    Kessentini, A.
    Muneer, P.
    Ijyas, Thafasal
    Wase, M. Abdul
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2019, 11 (12) : 1617 - 1632
  • [48] Deep Video Prediction Network-ased Inter-Frame Coding in HEVC
    Lee, Jung-Kyung
    Kim, Nayoung
    Cho, Seunghyun
    Kang, Je-Won
    IEEE ACCESS, 2020, 8 : 95906 - 95917
  • [49] Hybrid variable length coding in video compression using varlable breakpoint
    Tian, Dihong
    Chang, Pi Sheng
    Chen, Wen H.
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 1541 - 1544
  • [50] Deep Compression: A Compression Technology for Apron Surveillance Video
    Lu Zonglei
    Xu Xianhong
    IEEE ACCESS, 2019, 7 : 129966 - 129974