Full-Scale Selective Transformer for Semantic Segmentation

被引:0
作者
Lin, Fangjian [1 ,2 ,3 ]
Wu, Sitong [2 ]
Ma, Yizhe [1 ]
Tian, Shengwei [1 ]
机构
[1] Xinjiang Univ, Sch Software, Urumqi, Peoples R China
[2] Baidu VIS, Beijing, Peoples R China
[3] Baidu Res, Inst Deep Learning, Beijing, Peoples R China
来源
COMPUTER VISION - ACCV 2022, PT VII | 2023年 / 13847卷
关键词
Semantic segmentation; Transformer; Full-scale feature fusion;
D O I
10.1007/978-3-031-26293-7_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we rethink the multi-scale feature fusion from two perspectives (scale-level and spatial-level) and propose a full-scale selective fusion strategy for semantic segmentation. Based on such strategy, we design a novel segmentation network, named Full-scale Selective Transformer (FSFormer). Specifically, our FSFormer adaptively selects partial tokens from all tokens at all scales to construct a token subset of interest for each scale. Therefore, each token only interacts with the tokens within its corresponding token subset of interest. The proposed full-scale selective fusion strategy can not only filter out the noisy information propagation but also reduce the computational costs to some extent. We evaluate our FSFormer on four challenging semantic segmentation benchmarks, including PASCAL Context, ADE20K, COCO-Stuff 10K, and Cityscapes, outperforming the state-of-the-art methods. We evaluate our FSFormer on four challenging semantic segmentation benchmarks, including PASCAL Context, ADE20K, COCO-Stuff 10K, and Cityscapes, outperforming the state-of-the-art methods.
引用
收藏
页码:310 / 326
页数:17
相关论文
共 50 条
  • [41] Semantic Segmentation of UAV Images Based on Transformer Framework with Context Information
    Kumar, Satyawant
    Kumar, Abhishek
    Lee, Dong-Gyu
    MATHEMATICS, 2022, 10 (24)
  • [42] DGFormer: A Dynamic Kernel with Gaussian Fusion Transformer for Semantic Image Segmentation
    Yang, Haoran
    Tang, Longyi
    Wu, Tingting
    Yan, Binyu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT III, 2024, 15018 : 17 - 30
  • [43] A Transformer-based Semantic Segmentation Model for Street Fashion Images
    Peng, Dingjie
    Kameyama, Wataru
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY, IWAIT 2023, 2023, 12592
  • [44] Semantic segmentation of large-scale point clouds by integrating attention mechanisms and transformer models
    Yuan, Tiebiao
    Yu, Yangyang
    Wang, Xiaolong
    IMAGE AND VISION COMPUTING, 2024, 146
  • [45] TRANSFORMER-BASED METHOD FOR SEMANTIC SEGMENTATION AND RECONSTRUCTION OF THE MARTIAN SURFACE
    Li, Z.
    Wu, B.
    Chen, Z.
    Ma, Y.
    GEOSPATIAL WEEK 2023, VOL. 48-1, 2023, : 1643 - 1649
  • [46] Enhancing Multiscale Representations With Transformer for Remote Sensing Image Semantic Segmentation
    Xiao, Tao
    Liu, Yikun
    Huang, Yuwen
    Li, Mingsong
    Yang, Gongping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [47] Class-Prompting Transformer for Incremental Semantic Segmentation
    Song, Zichen
    Shi, Zhaofeng
    Shang, Chao
    Meng, Fanman
    Xu, Linfeng
    IEEE ACCESS, 2023, 11 : 100154 - 100164
  • [48] Laformer: Vision Transformer for Panoramic Image Semantic Segmentation
    Yuan, Zheng
    Wang, Junhua
    Lv, Yuxin
    Wang, Ding
    Fang, Yi
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1792 - 1796
  • [49] A reversible transformer for LiDAR point cloud semantic segmentation
    Akwensi, Perpertual Hope
    Wang, Ruisheng
    2023 20TH CONFERENCE ON ROBOTS AND VISION, CRV, 2023, : 19 - 28
  • [50] HSPFormer: Hierarchical Spatial Perception Transformer for Semantic Segmentation
    Chen, Siyu
    Han, Ting
    Zhang, Changshe
    Su, Jinhe
    Wang, Ruisheng
    Chen, Yiping
    Wang, Zongyue
    Cai, Guorong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025,