Full-Scale Selective Transformer for Semantic Segmentation

被引:0
|
作者
Lin, Fangjian [1 ,2 ,3 ]
Wu, Sitong [2 ]
Ma, Yizhe [1 ]
Tian, Shengwei [1 ]
机构
[1] Xinjiang Univ, Sch Software, Urumqi, Peoples R China
[2] Baidu VIS, Beijing, Peoples R China
[3] Baidu Res, Inst Deep Learning, Beijing, Peoples R China
来源
COMPUTER VISION - ACCV 2022, PT VII | 2023年 / 13847卷
关键词
Semantic segmentation; Transformer; Full-scale feature fusion;
D O I
10.1007/978-3-031-26293-7_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we rethink the multi-scale feature fusion from two perspectives (scale-level and spatial-level) and propose a full-scale selective fusion strategy for semantic segmentation. Based on such strategy, we design a novel segmentation network, named Full-scale Selective Transformer (FSFormer). Specifically, our FSFormer adaptively selects partial tokens from all tokens at all scales to construct a token subset of interest for each scale. Therefore, each token only interacts with the tokens within its corresponding token subset of interest. The proposed full-scale selective fusion strategy can not only filter out the noisy information propagation but also reduce the computational costs to some extent. We evaluate our FSFormer on four challenging semantic segmentation benchmarks, including PASCAL Context, ADE20K, COCO-Stuff 10K, and Cityscapes, outperforming the state-of-the-art methods. We evaluate our FSFormer on four challenging semantic segmentation benchmarks, including PASCAL Context, ADE20K, COCO-Stuff 10K, and Cityscapes, outperforming the state-of-the-art methods.
引用
收藏
页码:310 / 326
页数:17
相关论文
共 50 条
  • [1] TrSeg: Transformer for semantic segmentation
    Jin, Youngsaeng
    Han, David
    Ko, Hanseok
    PATTERN RECOGNITION LETTERS, 2021, 148 : 29 - 35
  • [2] MUSTER: A Multi-Scale Transformer-Based Decoder for Semantic Segmentation
    Xu, Jing
    Shi, Wentao
    Gao, Pan
    Li, Qizhu
    Wang, Zhengwei
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2025, 9 (01): : 202 - 212
  • [3] TransRVNet: LiDAR Semantic Segmentation With Transformer
    Cheng, Hui-Xian
    Han, Xian-Feng
    Xiao, Guo-Qiang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (06) : 5895 - 5907
  • [4] Pyramid Fusion Transformer for Semantic Segmentation
    Qin, Zipeng
    Liu, Jianbo
    Zhang, Xiaolin
    Tian, Maoqing
    Zhou, Aojun
    Yi, Shuai
    Li, Hongsheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9630 - 9643
  • [5] Cross-scale sampling transformer for semantic image segmentation
    Ma, Yizhe
    Yu, Long
    Lin, Fangjian
    Tian, Shengwei
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (02) : 2895 - 2907
  • [6] Radial Transformer for Large-Scale Outdoor LiDAR Point Cloud Semantic Segmentation
    He, Xiang
    Li, Xu
    Ni, Peizhou
    Xu, Wang
    Xu, Qimin
    Liu, Xixiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [7] Multi-scale full spike pattern for semantic segmentation
    Su, Qiaoyi
    He, Weihua
    Wei, Xiaobao
    Xu, Bo
    Li, Guoqi
    NEURAL NETWORKS, 2024, 176
  • [8] MMSFormer: Multimodal Transformer for Material and Semantic Segmentation
    Reza, Md Kaykobad
    Prater-Bennette, Ashley
    Asif, M. Salman
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2024, 5 : 599 - 610
  • [9] Mix-layers semantic extraction and multi-scale aggregation transformer for semantic segmentation
    Li, Tianping
    Yang, Xiaolong
    Zhang, Zhenyi
    Cui, Zhaotong
    Maoxia, Zhou
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (01)
  • [10] SSDT: Scale-Separation Semantic Decoupled Transformer for Semantic Segmentation of Remote Sensing Images
    Zheng, Chengyu
    Jiang, Yanru
    Lv, Xiaowei
    Nie, Jie
    Liang, Xinyue
    Wei, Zhiqiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 9037 - 9052