Multi-Fault Classification and Diagnosis of Rolling Bearing Based on Improved Convolution Neural Network

被引:8
|
作者
Zhang, Xiong [1 ,2 ]
Li, Jialu [2 ]
Wu, Wenbo [2 ]
Dong, Fan [2 ]
Wan, Shuting [1 ,2 ]
机构
[1] Hebei Key Lab Elect Machinery Hlth Maintenance & F, Baoding 071003, Peoples R China
[2] North China Elect Power Univ, Dept Mech Engn, Baoding 071003, Peoples R China
基金
中国国家自然科学基金;
关键词
convolution neural network; rolling bearing; multi-classification problem;
D O I
10.3390/e25050737
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
At present, the fault diagnosis methods for rolling bearings are all based on research with fewer fault categories, without considering the problem of multiple faults. In practical applications, the coexistence of multiple operating conditions and faults can lead to an increase in classification difficulty and a decrease in diagnostic accuracy. To solve this problem, a fault diagnosis method based on an improved convolution neural network is proposed. The convolution neural network adopts a simple structure of three-layer convolution. The average pooling layer is used to replace the common maximum pooling layer, and the global average pooling layer is used to replace the full connection layer. The BN layer is used to optimize the model. The collected multi-class signals are used as the input of the model, and the improved convolution neural network is used for fault identification and classification of the input signals. The experimental data of XJTU-SY and Paderborn University show that the method proposed in this paper has a good effect on the multi-classification of bearing faults.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Rolling bearing fault convolutional neural network diagnosis method based on casing signal
    Zhang, Xiangyang
    Chen, Guo
    Hao, Tengfei
    He, Zhiyuan
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2020, 34 (06) : 2307 - 2316
  • [42] Fault Diagnosis Method for the Rolling Bearing Based on Information Fusion and BP Neural Network
    Zhang, Jinmin
    Huang, Yinhua
    Wang, Siming
    MATERIALS PROCESSING TECHNOLOGY II, PTS 1-4, 2012, 538-541 : 1956 - +
  • [43] Convolutional neural network diagnosis method of rolling bearing fault based on casing signal
    Zhang X.
    Chen G.
    Hao T.
    He Z.
    Li X.
    Cheng Z.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2019, 34 (12): : 2729 - 2737
  • [44] Demodulation spectrum analysis for multi-fault diagnosis of rolling bearing via chirplet path pursuit
    Liu, Dong-dong
    Cheng, Wei-dong
    Wen, Wei-gang
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2019, 26 (09) : 2418 - 2431
  • [45] Rolling Bearing Fault Diagnosis Based on Convolutional Neural Network and Support Vector Machine
    Yuan, Laohu
    Lian, Dongshan
    Kang, Xue
    Chen, Yuanqiang
    Zhai, Kejia
    IEEE ACCESS, 2020, 8 : 137395 - 137406
  • [46] Rolling bearing fault convolutional neural network diagnosis method based on casing signal
    Xiangyang Zhang
    Guo Chen
    Tengfei Hao
    Zhiyuan He
    Journal of Mechanical Science and Technology, 2020, 34 : 2307 - 2316
  • [47] Rolling bearing fault diagnosis based on feature fusion with parallel convolutional neural network
    Mingxuan Liang
    Pei Cao
    J. Tang
    The International Journal of Advanced Manufacturing Technology, 2021, 112 : 819 - 831
  • [48] An adaptive deep convolutional neural network for rolling bearing fault diagnosis
    Wang Fuan
    Jiang Hongkai
    Shao Haidong
    Duan Wenjing
    Wu Shuaipeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (09)
  • [49] Fault Diagnosis of Rolling Bearing Based on Improved Data Fusion
    Qi Y.
    Bai Y.
    Gao S.
    Li Y.
    Tiedao Xuebao/Journal of the China Railway Society, 2022, 44 (10): : 24 - 32
  • [50] Wavelet neural network and its application in fault diagnosis of rolling bearing
    Wang, GF
    Wang, TY
    ICMIT 2005: INFORMATION SYSTEMS AND SIGNAL PROCESSING, 2005, 6041