Multi-Fault Classification and Diagnosis of Rolling Bearing Based on Improved Convolution Neural Network

被引:8
|
作者
Zhang, Xiong [1 ,2 ]
Li, Jialu [2 ]
Wu, Wenbo [2 ]
Dong, Fan [2 ]
Wan, Shuting [1 ,2 ]
机构
[1] Hebei Key Lab Elect Machinery Hlth Maintenance & F, Baoding 071003, Peoples R China
[2] North China Elect Power Univ, Dept Mech Engn, Baoding 071003, Peoples R China
基金
中国国家自然科学基金;
关键词
convolution neural network; rolling bearing; multi-classification problem;
D O I
10.3390/e25050737
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
At present, the fault diagnosis methods for rolling bearings are all based on research with fewer fault categories, without considering the problem of multiple faults. In practical applications, the coexistence of multiple operating conditions and faults can lead to an increase in classification difficulty and a decrease in diagnostic accuracy. To solve this problem, a fault diagnosis method based on an improved convolution neural network is proposed. The convolution neural network adopts a simple structure of three-layer convolution. The average pooling layer is used to replace the common maximum pooling layer, and the global average pooling layer is used to replace the full connection layer. The BN layer is used to optimize the model. The collected multi-class signals are used as the input of the model, and the improved convolution neural network is used for fault identification and classification of the input signals. The experimental data of XJTU-SY and Paderborn University show that the method proposed in this paper has a good effect on the multi-classification of bearing faults.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A multi-fault diagnosis method for rolling bearings
    Zhang, Kai
    Zhu, Eryu
    Zhang, Yimin
    Gao, Shuzhi
    Tang, Meng
    Huang, Qiujun
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (11) : 8413 - 8426
  • [22] Multi-fault diagnosis of rolling bearing using fuzzy entropy of empirical mode decomposition, principal component analysis, and SOM neural network
    Zair, Mohamed
    Rahmoune, Chemseddine
    Benazzouz, Djamel
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2019, 233 (09) : 3317 - 3328
  • [23] Rolling bearing fault diagnosis method based on a multi-scale and improved gated recurrent neural network with dual attention
    Wang M.
    Deng A.
    Ma T.
    Zhang Y.
    Xue Y.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (06): : 84 - 92and103
  • [24] Bearing compound fault diagnosis based on HHT algorithm and convolution neural network
    Shi J.
    Wu X.
    Liu T.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (04): : 34 - 43
  • [25] An improved multi-channel and multi-scale domain adversarial neural network for fault diagnosis of the rolling bearing
    Jin, Yongze
    Song, Xiaohao
    Yang, Yanxi
    Hei, Xinhong
    Feng, Nan
    Yang, Xubo
    CONTROL ENGINEERING PRACTICE, 2025, 154
  • [26] Application of convolutional neural network and kurtosis in fault diagnosis of rolling bearing
    Li J.
    Liu Y.
    Yu Y.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2019, 34 (11): : 2423 - 2431
  • [27] An Application of Convolution Neural Network and Long Short-Term Memory in Rolling Bearing Fault Diagnosis
    Chen B.
    Chen X.
    Shen B.
    Chen F.
    Li G.
    Xiao W.
    Xiao N.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2021, 55 (06): : 28 - 36
  • [28] Rolling bearing fault diagnosis method based on improved residual shrinkage network
    Linjun Wang
    Tengxiao Zou
    Kanglin Cai
    Yang Liu
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46
  • [29] A deep learning model for bearing fault diagnosis based on convolution neural network with multi-channel and residual network
    Tuo, Jianyong
    Hu, Yu
    Ma, Xin
    Wang, Youqing
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1278 - 1283
  • [30] Early fault alarm method of rolling bearing based on wavelet analysis and convolution neural network
    Liu, Xiyang
    Chen, Guo
    Wei, Xunkai
    Liu, Yaobin
    Wang, Hao
    He, Zhiyuan
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2024, 39 (09):