Broadened photocatalytic capability to near-infrared for CdS hybrids and positioning hydrogen evolution sites

被引:19
作者
Ma, Mengmeng [1 ,2 ]
Liu, Jun [3 ]
Zhao, Huaping [4 ,5 ]
Yue, Shizhong [1 ,2 ]
Zhong, Li [6 ,7 ]
Huang, Yanbin [8 ]
Jia, Xiaohao [1 ,2 ,4 ,5 ]
Liu, Kong [1 ,2 ]
Li, Xiaobao [6 ,7 ]
Wang, Zhijie [1 ,2 ]
Qu, Shengchun [1 ,2 ]
Lei, Yong [4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Key Lab Semicond Mat Sci, Beijing Key Lab Low Dimens Semicond Mat & Devices, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Beijing Normal Univ Zhuhai, Adv Inst Nat Sci, Minist Educ Groundwater Pollut Control & Remediat, Engn Res Ctr,Ctr Water Res,Guangdong Hong Kong Joi, Zhuhai 519087, Guangdong, Peoples R China
[4] Tech UniversitatIlmenau, Inst Phys, Fachgebiet Angew Nanophys, D-98693 Ilmenau, Germany
[5] Tech UniversitatIlmenau, IMN MacroNano, D-98693 Ilmenau, Germany
[6] Hefei Univ Technol, Sch Civil Engn, Hefei 230009, Peoples R China
[7] Jiangsu Key Lab Engn Mech, Nanjing 210096, Peoples R China
[8] Hebei Univ Engn, Sch Math Sci & Engn, Handan 056038, Peoples R China
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2023年 / 325卷
基金
中国国家自然科学基金;
关键词
Wide-spectrum light-harvesting; Hydrogen evolution reaction (HER); Localized surface plasmon resonance (LSPR); Directional charge transfer; Active sites; HOT-ELECTRON TRANSFER; PLASMONIC AU; WATER; MOS2; GENERATION; CHARGE; HETEROSTRUCTURE; NANOSTRUCTURES; NANOPARTICLES; COCATALYST;
D O I
10.1016/j.apcatb.2022.122327
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Wide-spectrum light harvesting is critical in determining practical photocatalysis water splitting. Hybridization presents a viable strategy to broaden photocatalytic capability, yet the direct conversion of near-infrared (NIR) light remains a matter of great concern. Herein, a state-of-art ternary Au nanorods@MoS2-CdS (AMC) hybrid is designed to address this challenge. AMC achieves a leap-forward apparent quantum yield (AQY) of 1.06% at 700 nm and an AQY of 35.7% at 450 nm, extending the hydrogen evolution reaction (HER) capability of CdS hybrids to the NIR region firstly. It is revealed that the energetic hot electrons supplied by Au nanorods (NRs) are responsible for this extension. Indispensable, MoS2 performs a platform to collect the hot electrons from Au NRs and the photoinduced electrons from CdS. The HER active sites are positioned as MoS2-CdS interfaces both from experimental and theoretical viewpoints. This work opens up a new horizon for the forward of the wide-spectrum photocatalysis design.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Photocatalytic hydrogen evolution based on mercaptopropionic acid stabilized CdS and CdTeS quantum dots
    Baslak, Canon
    Aslan, Emre
    Patir, Imren Hatay
    Kus, Mahmut
    Ersoz, Mustafa
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (45) : 20523 - 20528
  • [42] Spatially Separated CdS Shells Exposed with Reduction Surfaces for Enhancing Photocatalytic Hydrogen Evolution
    Xing, Mingyang
    Qiu, Bocheng
    Du, Mengmeng
    Zhu, Qiaohong
    Wang, Lingzhi
    Zhang, Jinlong
    ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (35)
  • [43] Improvement of Photocatalytic Performance using Near-Infrared Upconversion Nanoparticles
    Park, Yong Il
    APPLIED CHEMISTRY FOR ENGINEERING, 2021, 32 (02): : 125 - 131
  • [44] Enhanced performance for photocatalytic hydrogen evolution using MoS2/graphene hybrids
    Lee, Gang-Juan
    Hou, Yu-Hong
    Chen, Chin-Yi
    Tsay, Chien-Yie
    Chang, Yu-Cheng
    Chen, Jing-Heng
    Horng, Tzyy-Leng
    Anandan, Sambandam
    Wu, Jerry J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (08) : 5938 - 5948
  • [45] Near-Infrared Colloidal Quantum Dots for Efficient and Durable Photoelectrochemical Solar-Driven Hydrogen Production
    Jin, Lei
    AlOtaibi, Bandar
    Benetti, Daniele
    Li, Shun
    Zhao, Haiguang
    Mi, Zetian
    Vomiero, Alberto
    Rosei, Federico
    ADVANCED SCIENCE, 2016, 3 (03)
  • [46] Plasmonic Au nanoparticles embedding enhances the activity and stability of CdS for photocatalytic hydrogen evolution
    Yu, Guiyang
    Wang, Xiang
    Cao, Jungang
    Wu, Shujie
    Yan, Wenfu
    Liu, Gang
    CHEMICAL COMMUNICATIONS, 2016, 52 (11) : 2394 - 2397
  • [47] ZnS-CdS-TaON nanocomposites with enhanced stability and photocatalytic hydrogen evolution activity
    An, Lin
    Han, Xin
    Li, Yaogang
    Hou, Chengyi
    Wang, Hongzhi
    Zhang, Qinghong
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2019, 91 (01) : 82 - 91
  • [48] Heavy metal-free, near-infrared colloidal quantum dots for efficient photoelectrochemical hydrogen generation
    Tong, Xin
    Zhou, Yufeng
    Jin, Lei
    Basu, Kaustubh
    Adhikari, Rajesh
    Selopal, Gurpreet Singh
    Tong, Xin
    Zhao, Haiguang
    Sun, Shuhui
    Vomiero, Alberto
    Wang, Zhiming M.
    Rosei, Federico
    NANO ENERGY, 2017, 31 : 441 - 449
  • [49] Ingenious regulation and activation of sites in the 2H-MoS2 basal planes by oxygen incorporation for enhanced photocatalytic hydrogen evolution of CdS
    Zeng, Guixin
    Miao, Honghai
    Wu, Jiangbo
    Zhu, Xianglin
    Yi, Jianjian
    Zhu, Xingwang
    Qi, Haotian
    Jiang, Zaiyong
    Mo, Zhao
    Liu, Jinyuan
    Xu, Hui
    CHEMICAL ENGINEERING JOURNAL, 2024, 499
  • [50] Fabrication of CdS/Ni-Fe LDH heterostructure for improved photocatalytic hydrogen evolution from aqueous methanol solution
    Zhou, Hualei
    Song, Yingxiao
    Liu, Yichen
    Li, Hongda
    Li, Wenjun
    Chang, Zhidong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (31) : 14328 - 14336