Broadened photocatalytic capability to near-infrared for CdS hybrids and positioning hydrogen evolution sites

被引:19
作者
Ma, Mengmeng [1 ,2 ]
Liu, Jun [3 ]
Zhao, Huaping [4 ,5 ]
Yue, Shizhong [1 ,2 ]
Zhong, Li [6 ,7 ]
Huang, Yanbin [8 ]
Jia, Xiaohao [1 ,2 ,4 ,5 ]
Liu, Kong [1 ,2 ]
Li, Xiaobao [6 ,7 ]
Wang, Zhijie [1 ,2 ]
Qu, Shengchun [1 ,2 ]
Lei, Yong [4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Key Lab Semicond Mat Sci, Beijing Key Lab Low Dimens Semicond Mat & Devices, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Beijing Normal Univ Zhuhai, Adv Inst Nat Sci, Minist Educ Groundwater Pollut Control & Remediat, Engn Res Ctr,Ctr Water Res,Guangdong Hong Kong Joi, Zhuhai 519087, Guangdong, Peoples R China
[4] Tech UniversitatIlmenau, Inst Phys, Fachgebiet Angew Nanophys, D-98693 Ilmenau, Germany
[5] Tech UniversitatIlmenau, IMN MacroNano, D-98693 Ilmenau, Germany
[6] Hefei Univ Technol, Sch Civil Engn, Hefei 230009, Peoples R China
[7] Jiangsu Key Lab Engn Mech, Nanjing 210096, Peoples R China
[8] Hebei Univ Engn, Sch Math Sci & Engn, Handan 056038, Peoples R China
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2023年 / 325卷
基金
中国国家自然科学基金;
关键词
Wide-spectrum light-harvesting; Hydrogen evolution reaction (HER); Localized surface plasmon resonance (LSPR); Directional charge transfer; Active sites; HOT-ELECTRON TRANSFER; PLASMONIC AU; WATER; MOS2; GENERATION; CHARGE; HETEROSTRUCTURE; NANOSTRUCTURES; NANOPARTICLES; COCATALYST;
D O I
10.1016/j.apcatb.2022.122327
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Wide-spectrum light harvesting is critical in determining practical photocatalysis water splitting. Hybridization presents a viable strategy to broaden photocatalytic capability, yet the direct conversion of near-infrared (NIR) light remains a matter of great concern. Herein, a state-of-art ternary Au nanorods@MoS2-CdS (AMC) hybrid is designed to address this challenge. AMC achieves a leap-forward apparent quantum yield (AQY) of 1.06% at 700 nm and an AQY of 35.7% at 450 nm, extending the hydrogen evolution reaction (HER) capability of CdS hybrids to the NIR region firstly. It is revealed that the energetic hot electrons supplied by Au nanorods (NRs) are responsible for this extension. Indispensable, MoS2 performs a platform to collect the hot electrons from Au NRs and the photoinduced electrons from CdS. The HER active sites are positioned as MoS2-CdS interfaces both from experimental and theoretical viewpoints. This work opens up a new horizon for the forward of the wide-spectrum photocatalysis design.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Decoration of nicale phosphide nanoparticles on CdS nanorods for enhanced photocatalytic hydrogen evolution
    Chen, Lu
    Wang, Deling
    Xia, Yuzhou
    Liang, Ruowen
    Huang, Renkun
    Yan, Guiyang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (66) : 28486 - 28494
  • [32] Wrinkle-free atomically thin CdS nanosheets for photocatalytic hydrogen evolution
    Pan, Ziwei
    Li, Junnan
    Zhou, Kebin
    NANOTECHNOLOGY, 2018, 29 (21)
  • [33] Efficient enhancement of photocatalytic hydrogen evolution of CdS nanorods by Nano-CuO
    Wang, Jinhua
    Zhu, Qiong
    Liao, Yunwen
    Fu, Hongquan
    Chang, Jinming
    Zhang, Yuling
    Kan, Taotao
    Gao, Hejun
    Huang, Wenchao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 883
  • [34] Synthesis of CdS Nanorods by an Ethylenediamine Assisted Hydrothermal Method for Photocatalytic Hydrogen Evolution
    Li, Yuexiang
    Hu, Yuanfang
    Peng, Shaoqin
    Lu, Gongxuan
    Li, Shuben
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (21) : 9352 - 9358
  • [35] Wide spectrum responsive CdS/NiTiO3/CoS with superior photocatalytic performance for hydrogen evolution
    Wang, Zhaoyu
    Peng, Junwen
    Feng, Xue
    Ding, Zhengxin
    Li, Zhaohui
    CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (12) : 2524 - 2530
  • [36] g-C3N4 Modified by meso-Tetrahydroxyphenylchlorin for Photocatalytic Hydrogen Evolution Under Visible/Near-Infrared Light
    Liu, Yanfei
    Ma, Zhen
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [37] Nitridation of CoWO4/CdS Nanocomposite Formed Metal Nitrides Assisting Efficiently Photocatalytic Hydrogen Evolution
    Kuang, Wandi
    Meng, Xiangjian
    Wang, Caihong
    Talluri, Bhusankar
    Thomas, Tiju
    Jiang, Chunjie
    Liu, Siqi
    Yang, Minghui
    ACS OMEGA, 2020, 5 (17): : 9969 - 9976
  • [38] Effect of PdS on Photocatalytic Hydrogen Evolution of Nanostructured CdS under Visible Light Irradiation
    Chen, Qingyun
    Suo, Cheng
    Zhang, Shu
    Wang, Yunhai
    INTERNATIONAL JOURNAL OF PHOTOENERGY, 2013, 2013
  • [39] Phosphate-assisted hydrothermal synthesis of hexagonal CdS for efficient photocatalytic hydrogen evolution
    Li, Yuexiang
    Tang, Lifeng
    Peng, Shaoqin
    Li, Zengchun
    Lu, Gongxuan
    CRYSTENGCOMM, 2012, 14 (20): : 6974 - 6982
  • [40] Positive Ni(HCO3)2 as a Novel Cocatalyst for Boosting the Photocatalytic Hydrogen Evolution Capability of Mesoporous TiO2 Nanocrystals
    Wei, Yi
    Cheng, Gang
    Xiong, Jinyan
    Xu, Feifan
    Chen, Rong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (06): : 5027 - 5038