Effect of two organic phase change materials on the thermal performance of asphalt pavements

被引:10
|
作者
Anupam, B. R. [1 ]
Sahoo, Umesh Chandra [1 ]
Rath, Prasenjit [2 ]
机构
[1] Indian Inst Technol, Sch infrastructure, Bhubaneswar, India
[2] Indian Inst Technol, Sch Mech Sci, Bhubaneswar, India
关键词
Asphalt; cool pavements; core-shell encapsulation; phase change material; urban heat island; ENERGY-STORAGE; THERMOREGULATION; CONCRETE; SURFACES;
D O I
10.1080/10298436.2023.2215900
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Higher temperature is one of the key reasons for thermal distresses in asphalt pavement. It also adds to the Urban Heat Island (UHI) effect as it influences the near-surface air temperature. To design cooler pavements, phase change materials (PCMs) can be incorporated into asphalt pavements. However, considering the negative effects of PCM leakage on the physical and rheological properties of asphalt binder, a cent-percent effective core-shell encapsulated PCM suitable for asphalt pavement applications was developed under this study. With the incorporation of two organic mixture (OM) based PCMs, i.e., OM-35 and OM-42, a peak decrease in the pavement surface temperature of 3.05 degrees C and 4.36 degrees C, respectively were observed under the field condition. Furthermore, from the long-term thermal performance assessment, it was found that the magnitude of temperature reduction depends on the phase change temperature and latent heat of PCM. The season of occurrence of the peak temperature reduction depends on the phase change temperature of the PCM. Due to PCM solidification, the increase in night-time pavement surface temperature was observed to be about half of that during day time. Further, the statistical analysis reveals that the decrease in pavement surface temperature due to PCM incorporation is significant and consistent.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A review of phase change materials in asphalt binder and asphalt mixture
    Guo, Meng
    Liang, Meichen
    Jiao, Yubo
    Zhao, Wei
    Duan, Yongxia
    Liu, Haiqing
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 258
  • [32] Preparation and thermal performance of ternary carbonates/silica microcomposites as phase change materials
    Mo, Songping
    Mo, Bingzhong
    Wu, Fan
    Jia, Lisi
    Chen, Ying
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2021, 99 (01) : 220 - 229
  • [33] Figure of merit for the thermal performance of cementitious composites containing phase change materials
    Thiele, Alexander M.
    Wei, Zhenhua
    Falzone, Gabriel
    Young, Benjamin A.
    Neithalath, Narayanan
    Sant, Gaurav
    Pilon, Laurent
    CEMENT & CONCRETE COMPOSITES, 2016, 65 : 214 - 226
  • [34] Nanoparticles to Enhance Melting Performance of Phase Change Materials for Thermal Energy Storage
    Han, Yu
    Yang, Yan
    Mallick, Tapas
    Wen, Chuang
    NANOMATERIALS, 2022, 12 (11)
  • [35] Energizing organic phase change materials using silver nanoparticles for thermal energy storage
    Kalidasan, B.
    Pandey, A. K.
    Saidur, R.
    Tyagi, V. V.
    JOURNAL OF ENERGY STORAGE, 2023, 58
  • [36] Thermal property prediction and measurement of organic phase change materials in the liquid phase near the melting point
    O'Connor, William E.
    Warzoha, Ronald
    Weigand, Rebecca
    Fleischer, Amy S.
    Wemhoff, Aaron P.
    APPLIED ENERGY, 2014, 132 : 496 - 506
  • [37] Thermal performance of electronic components based on phase change materials
    Lai, Y. (laiyh@sdu.edu.cn), 1600, Materials China (65): : 157 - 161
  • [38] PHASE CHANGE MATERIALS AS THERMAL STORAGE FOR HIGH PERFORMANCE HOMES
    Campbell, Kevin R.
    Sailor, David J.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B, 2012, : 809 - 818
  • [39] Enhanced thermal performance of form-stable phase change materials with organic and inorganic supporting nanofillers
    Wei-Chi Lai
    Ren-Wei Fan
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 14287 - 14295
  • [40] Phase change materials for photovoltaic thermal management
    Browne, M. C.
    Norton, B.
    McCormack, S. J.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 47 : 762 - 782