2.75D: Boosting learning by representing 3D Medical imaging to 2D features for small data

被引:6
|
作者
Wang, Xin [1 ]
Su, Ruisheng [2 ]
Xie, Weiyi [3 ]
Wang, Wenjin [4 ]
Xu, Yi [5 ]
Mann, Ritse [1 ]
Han, Jungong [6 ]
Tan, Tao [1 ,7 ]
机构
[1] Netherlands Canc Inst, Dept Radiol, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[2] Erasmus MC, Doctor Molewaterpl 40, NL-3015 CD Rotterdam, Netherlands
[3] Radboud Univ Nijmegen, Med Ctr, Geert Grootepl Zuid 10, NL-6525 GA Nijmegen, Netherlands
[4] Southern Univ Sci & Technol, Biomed Engn Dept, Xueyuan Blvd 1088, Shenzhen 518055, Peoples R China
[5] Shanghai Jiao Tong Univ, Shanghai Key Lab Digital Media Proc & Transmiss, Dong Chuan Rd 800, Shanghai 200240, Peoples R China
[6] Univ Sheffield, Dept Comp Sci, Western Bank, Sheffield S10 2TN, England
[7] Macao Polytech Univ, Fac Appl Sci, Rua Luis Gonzaga Gomes, Macau, Peoples R China
关键词
Medical imaging; Spiral sampling; 2; 75D; Deep learning; MRI; CT; Luna cancer; Breast cancer; Prostate cancer; CONVOLUTIONAL NEURAL-NETWORK; PULMONARY NODULE DETECTION; FALSE-POSITIVE REDUCTION; COMPUTER-AIDED DETECTION; AUTOMATIC DETECTION; CT IMAGES; BREAST-CANCER; CLASSIFICATION; CNNS;
D O I
10.1016/j.bspc.2023.104858
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In medical-data driven learning, 3D convolutional neural networks (CNNs) have started to show superior performance to 2D CNNs in numerous deep learning tasks, proving the added value of 3D spatial information in feature representation. However, the difficulty in collecting more training samples to converge, more computational resources and longer execution time make this approach less applied. Also, applying transfer learning on 3D CNN is challenging due to a lack of publicly available pre-trained 3D models. To tackle these issues, we proposed a novel 2D strategical representation of volumetric data, namely 2.75D. In this work, the spatial information of 3D images is captured in a single 2D view by a spiral-spinning technique. As a result, 2D CNN networks can also be used to learn volumetric information. Besides, we can fully leverage pre-trained 2D CNNs for downstream vision problems. We also explore a multi-view 2.75D strategy, 2.75D 3 channels (2.75D x 3), to boost the advantage of 2.75D. We evaluated the proposed methods on three public datasets with different modalities or organs (Lung CT, Breast MRI, and Prostate MRI), against their 2D, 2.5D, and 3D counterparts in classification tasks. Results show that the proposed methods significantly outperform other counterparts when all methods were trained from scratch on the lung dataset. Such performance gain is more pronounced with transfer learning or in the case of limited training data. Our methods also achieved comparable performance on other datasets. In addition, our methods achieved a substantial reduction in time consumption of training and inference compared with the 2.5D or 3D method.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Segment 2D and 3D Filaments by Learning Structured and Contextual Features
    Gu, Lin
    Zhang, Xiaowei
    Zhao, He
    Li, Huiqi
    Cheng, Li
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (02) : 596 - 606
  • [2] Leveraging 2D Deep Learning ImageNet-trained Models for Native 3D Medical Image Analysis
    Baheti, Bhakti
    Pati, Sarthak
    Menze, Bjoern
    Bakas, Spyridon
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, 2023, 13769 : 68 - 79
  • [3] Are 3D better than 2D Convolutional Neural Networks for Medical Imaging Semantic Segmentation?
    Crespi, Leonardo
    Loiacono, Daniele
    Sartori, Pierandrea
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [4] Machine learning prediction of axillary lymph node metastasis in breast cancer: 2D versus 3D radiomic features
    Arefan, Dooman
    Chai, Ruimei
    Sun, Min
    Zuley, Margarita L.
    Wu, Shandong
    MEDICAL PHYSICS, 2020, 47 (12) : 6334 - 6342
  • [5] Boosting Resolution and Recovering Texture of 2D and 3D Micro-CT Images with Deep Learning
    Da Wang, Ying
    Armstrong, Ryan T.
    Mostaghimi, Peyman
    WATER RESOURCES RESEARCH, 2020, 56 (01)
  • [6] Mixture 2D Convolutions for 3D Medical Image Segmentation
    Wang, Jianyong
    Zhang, Lei
    Yi, Zhang
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2023, 33 (01)
  • [7] Stages prediction of Alzheimer's disease with shallow 2D and 3D CNNs from intelligently selected neuroimaging data
    Rahman, Jalees Ur
    Hanif, Muhammad
    Rehman, Obaid Ur
    Haider, Usman
    Qaisar, Saeed Mian
    Plawiak, Pawel
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [8] 3D Deep Learning on Medical Images: A Review
    Singh, Satya P.
    Wang, Lipo
    Gupta, Sukrit
    Goli, Haveesh
    Padmanabhan, Parasuraman
    Gulyas, Balazs
    SENSORS, 2020, 20 (18) : 1 - 24
  • [9] 2D/3D image registration using regression learning
    Chou, Chen-Rui
    Frederick, Brandon
    Mageras, Gig
    Chang, Sha
    Pizer, Stephen
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2013, 117 (09) : 1095 - 1106
  • [10] Integrating 3D and 2D Views of Medical Image Data in Virtual Reality for Efficient Navigation
    Klonig, Johannes
    Herrlich, Marc
    2020 8TH IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2020), 2020, : 171 - 177