Eliminating the Fading Noise in Distributed Acoustic Sensing Data

被引:6
作者
He, Xiangge [1 ,2 ,3 ]
Cao, Zhi [4 ]
Ji, Peng [4 ]
Gu, Lijuan [1 ,2 ]
Wei, Shipeng [4 ]
Fan, Bo [4 ]
Zhang, Min [1 ,2 ,3 ]
Lu, Hailong [1 ,2 ]
机构
[1] Peking Univ, Beijing Int Ctr Gas Hydrate, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Dongguan Inst Opt & Elect, Dongguan 523000, Peoples R China
[4] CNPC Offshore Engn Co Ltd, Beijing Beijing10002, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Big fading error; DAS raw data; distortion; distributed acoustic sensor (DAS); fading noise; SENSOR; INTERFERENCE; SUPPRESSION; TIME; OTDR;
D O I
10.1109/TGRS.2023.3263159
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Fading noise is a crucial problem in a distributed acoustic sensor (DAS) system, which can severely degrade the system's ability on distributed detection. In this article, we systematically studied the mechanism and characteristics of fading noise in a dual-pulse heterodyne demodulated DAS system. Results show that fading noise not only causes big fading errors in signal, but also leads to amplitude distortion of seismic wave. We propose the sort and average over trace (SAOT) algorithm to eliminate the fading noise of DAS data. After implementation of the algorithm on the simulated DAS data, the big fading error can be eliminated 100%, and the residual standard deviation can be reduced by 32 dB. Meanwhile, the correlation between the processed data and the noise-free data is improved by 29 dB. Then, the performance of the algorithm is further verified by laboratory experiment, achieving a residual standard deviation reduction of 33 dB. Finally, the algorithm can perfectly eliminate the fading noise in vertical seismic profile (VSP) DAS data and surface seismic DAS data obtained at the oilfield site.
引用
收藏
页数:10
相关论文
共 30 条
[21]  
Schumann H, 2022, GEOPHYSICS, V87, pD101, DOI [10.1190/geo2021-0276.1, 10.1190/GEO2021-0276.1]
[22]   Near-Surface Characterization Using High-Speed Train Seismic Data Recorded by a Distributed Acoustic Sensing Array [J].
Shao, Jie ;
Wang, Yibo ;
Chen, Ling .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[23]   Near-surface characterization using a roadside distributed acoustic sensing array [J].
Yuan S. ;
Lellouch A. ;
Clapp R.G. ;
Biondi B. .
Leading Edge, 2020, 39 (09) :646-653
[24]   Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables [J].
Sladen, A. ;
Rivet, D. ;
Ampuero, J. P. ;
De Barros, L. ;
Hello, Y. ;
Calbris, G. ;
Lamare, P. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[25]   Distributed sensing of microseisms and teleseisms with submarine dark fibers [J].
Williams, Ethan F. ;
Fernandez-Ruiz, Maria R. ;
Magalhaes, Regina ;
Vanthillo, Roel ;
Zhan, Zhongwen ;
Gonzalez-Herraez, Miguel ;
Martins, Hugo F. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[26]   Dual-well 3D vertical seismic profile enabled by distributed acoustic sensing in deepwater Gulf of Mexico [J].
Wu, Han ;
Wong, Wai-Fan ;
Yang, Zhaohui ;
Wills, Peter B. ;
Lopez, Jorge L. ;
Li, Yingping ;
Blonk, Bastian ;
Hewett, Ben ;
Mateeva, Albena .
INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2015, 3 (03) :SW11-SW25
[27]   Multi-Scale Progressive Fusion Attention Network Based on Small Sample Training for DAS Noise Suppression [J].
Wu, Ning ;
Xing, Tong ;
Li, Yue .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[28]   Advanced Distributed Acoustic Sensing Vertical Seismic Profile Imaging of an Alaska North Slope Gas Hydrate Field [J].
Young, Cullen ;
Shragge, Jeffrey ;
Schultz, Whitney ;
Haines, Seth ;
Oren, Can ;
Simmons, James ;
Collett, Timothy S. .
ENERGY & FUELS, 2022, 36 (07) :3481-3495
[29]   Distributed Acoustic Sensing Vertical Seismic Profile Data Denoiser Based on Convolutional Neural Network [J].
Zhao, Yuxing ;
Li, Yue ;
Wu, Ning .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[30]   Interference fading suppression in φ-OTDR using space-division multiplexed probes [J].
Zhao, Zhiyong ;
Wu, Huan ;
Hu, Junhui ;
Zhu, Kun ;
Dang, Yunli ;
Yan, Yaxi ;
Tang, Ming ;
Lu, Chao .
OPTICS EXPRESS, 2021, 29 (10) :15452-15462