An electrolyte additive for the improved high voltage performance of LiNi0.5Mn1.5O4 (LNMO) cathodes in Li-ion batteries

被引:17
|
作者
Nguyen, Minh Tri [1 ]
Pham, Hieu Quang [2 ]
Berrocal, Jose Augusto [1 ]
Gunkel, Ilja [1 ]
Steiner, Ullrich [1 ]
机构
[1] Univ Fribourg, Adolphe Merkle Inst, Chemin Verdiers 4, CH-1700 Fribourg, Switzerland
[2] Morrow Batteries, Havnegaten 2, N-4836 Arendal, Norway
基金
瑞士国家科学基金会;
关键词
ELECTROCHEMICAL PERFORMANCE; LITHIUM; SPINEL; CHALLENGES; INTERPHASE; OPERATION;
D O I
10.1039/d2ta09930f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High-voltage cathode materials are important for the implementation of high-energy-density Li-ion batteries. However, with increasing cut-off voltages, interfacial instabilities between electrodes and the electrolyte limit their commercial development. This study addresses this issue by proposing a new electrolyte additive, (3-aminopropyl)triethoxysilane (APTS). APTS stabilises the interface between the LiNi0.5Mn1.5O4 (LNMO) cathode and the electrolyte in LNMO||Li half-cells due to its multifunctional character. The amino groups in APTS facilitate the formation of a robust protective cathode layer. Its silane groups improve layer stability by neutralising the electrolyte's detrimental hydrogen fluoride and water. Electrochemical measurements reveal that the addition of 0.5 wt% APTS significantly improves the long-term cycling stability of LNMO||Li half-cells at room temperature and 55 degrees C. APTS-addition to the electrolyte delivers excellent capacity retention of 92% after 350 cycles at room temperature and 71% after 300 cycles at 55 degrees C (1C) contrasting with the much lower performances of the additive-free electrolyte. The addition of a 0.5 wt% (3-glycidyloxypropyl)trimethoxysilane (GLYMO) additive, which contains only the siloxane group, but lacks the amine group, displayed a capacity retention of 73% after 350 cycles at room temperature but degraded significantly upon cycling at 55 degrees C.
引用
收藏
页码:7670 / 7678
页数:9
相关论文
共 50 条
  • [1] Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries
    Liu, G. Q.
    Wen, L.
    Liu, Y. M.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2010, 14 (12) : 2191 - 2202
  • [2] Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries
    G. Q. Liu
    L. Wen
    Y. M. Liu
    Journal of Solid State Electrochemistry, 2010, 14 : 2191 - 2202
  • [3] Electrolyte Reactions with the Surface of High Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries
    Yang, Li
    Ravdel, Boris
    Lucht, Brett L.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (08) : A95 - A97
  • [4] Electrolyte additives for high voltage LiNi0.5Mn1.5O4 batteries
    Delp, Samuel
    Jow, Taiguang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [5] Failure mechanism for high voltage graphite/LiNi0.5Mn1.5O4 (LNMO) Li-ion cells stored at elevated temperature
    Lu, D. S.
    Yuan, L. B.
    Li, J. L.
    Huang, R. Q.
    Guo, J. H.
    Cai, Y. P.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2015, 758 : 33 - 38
  • [6] Fluorine gradient-doped LiNi0.5Mn1.5O4 spinel with improved high voltage stability for Li-ion batteries
    Luo, Ying
    Li, Haiyan
    Lu, Taolin
    Zhang, Yixiao
    Mao, Samuel S.
    Liu, Zhi
    Wen, Wen
    Xie, Jingying
    Yan, Liqin
    ELECTROCHIMICA ACTA, 2017, 238 : 237 - 245
  • [7] Silicon-doped LiNi0.5Mn1.5O4 as a high-voltage cathode for Li-ion batteries
    Bini, Marcella
    Boni, Pietro
    Mustarelli, Piercarlo
    Quinzeni, Irene
    Bruni, Giovanna
    Capsoni, Doretta
    SOLID STATE IONICS, 2018, 320 : 1 - 6
  • [8] High Voltage Spinel-Structured LiNi0.5Mn1.5O4 as Cathode Materials for Li-Ion Batteries
    Deng Haifu
    Nie Ping
    Shen Laifa
    Luo Haifeng
    Zhang Xiaogang
    PROGRESS IN CHEMISTRY, 2014, 26 (06) : 939 - 949
  • [9] Both Interface and Bulk Stable LiNi0.5Mn1.5O4 Cathodes for High-Energy Li-Ion Batteries
    Luo, Hanwu
    Shi, Haipeng
    Cao, Yang
    Yin, Yuting
    Feng, Yi-Hu
    Fan, Xin-Yu
    Wang, Peng-Fei
    Han, Xiaogang
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (06) : 7582 - 7589
  • [10] Breaking Limits of Li-Ion Batteries with High-Voltage Spinel LiNi0.5Mn1.5O4 Nanofiber/Carbon Nanotube Composite Cathodes
    Na-Yeong Kim
    Min Kyoung Gi
    Zubair Ahmed Chandio
    Jeong-Ho Park
    Jun Young Cheong
    Ji-Won Jung
    Korean Journal of Chemical Engineering, 2024, 41 : 1513 - 1520