An Efficient SMOTE-Based Deep Learning Model for Voice Pathology Detection

被引:8
作者
Lee, Ji-Na [1 ]
Lee, Ji-Yeoun [2 ]
机构
[1] Seokyeong Univ, Div Global Business Languages, Seoul 02173, South Korea
[2] Eulji Univ, Dept Bigdata Med Convergence, 553 Sanseong daero, Seongnam Si 13135, South Korea
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 06期
基金
新加坡国家研究基金会;
关键词
pathological voice; disordered voice; imbalanced learning; voice pathology classification; SMOTE; ADASYN; Borderline-SMOTE; deep learning; intelligent medical diagnosis system; DISEASE DETECTION; IMBALANCED DATA;
D O I
10.3390/app13063571
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Saarbruecken Voice Database (SVD) is a public database used by voice pathology detection systems. However, the distributions of the pathological and normal voice samples show a clear class imbalance. This study aims to develop a system for the classification of pathological and normal voices that uses efficient deep learning models based on various oversampling methods, such as the adaptive synthetic sampling (ADASYN), synthetic minority oversampling technique (SMOTE), and Borderline-SMOTE directly applied to feature parameters. The suggested combinations of oversampled linear predictive coefficients (LPCs), mel-frequency cepstral coefficients (MFCCs), and deep learning methods can efficiently classify pathological and normal voices. The balanced datasets from ADASYN, SMOTE, and Borderline-SMOTE are used to validate and evaluate the various deep learning models. The experiments are conducted using model evaluation metrics such as the recall, specificity, G, and F1 value. The experimental results suggest that the proposed voice pathology detection (VPD) system integrating the LPCs oversampled by the SMOTE and a convolutional neural network (CNN) can effectively yield the highest accuracy at 98.89% when classifying pathological and normal voices. Finally, the performances of oversampling algorithms such as the ADASYN, SMOTE, and Borderline-SMOTE are discussed. Furthermore, the performance of SMOTE is superior to conventional imbalanced data oversampling algorithms, and it can be used to diagnose pathological signals in real-world applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] EADN: An Efficient Deep Learning Model for Anomaly Detection in Videos
    Ul Amin, Sareer
    Ullah, Mohib
    Sajjad, Muhammad
    Cheikh, Faouzi Alaya
    Hijji, Mohammad
    Hijji, Abdulrahman
    Muhammad, Khan
    [J]. MATHEMATICS, 2022, 10 (09)
  • [32] A Robust Framework for Severity Detection of Knee Osteoarthritis Using an Efficient Deep Learning Model
    Mahum, Rabbia
    Irtaza, Aun
    El-Meligy, Mohammed A. A.
    Sharaf, Mohamed
    Tlili, Iskander
    Butt, Saamia
    Mahmood, Asad
    Awais, Muhammad
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (07)
  • [33] A novel framework for potato leaf disease detection using an efficient deep learning model
    Mahum, Rabbia
    Munir, Haris
    Mughal, Zaib-Un-Nisa
    Awais, Muhammad
    Khan, Falak Sher
    Saqlain, Muhammad
    Mahamad, Saipunidzam
    Tlili, Iskander
    [J]. HUMAN AND ECOLOGICAL RISK ASSESSMENT, 2023, 29 (02): : 303 - 326
  • [34] Multi-modal voice pathology detection architecture based on deep and handcrafted feature fusion
    Omeroglu, Asli Nur
    Mohammed, Hussein M. A.
    Oral, Emin Argun
    [J]. ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2022, 36
  • [35] An Effective Intrusion Detection Model for Class-imbalanced Learning Based on SMOTE and Attention Mechanism
    Jiao, Xubin
    Li, Jinguo
    [J]. 2021 18TH INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST (PST), 2021,
  • [36] An Automated Vision-Based Deep Learning Model for Efficient Detection of Android Malware Attacks
    Almomani, Iman
    Alkhayer, Aala
    El-Shafai, Walid
    [J]. IEEE ACCESS, 2022, 10 : 2700 - 2720
  • [37] TLEABLCNN: Brain and Alzheimers Disease Detection Using Attention-Based Explainable Deep Learning and SMOTE Using Imbalanced Brain MRI
    Kina, Erol
    [J]. IEEE ACCESS, 2025, 13 : 27670 - 27683
  • [38] An efficient network intrusion detection approach based on deep learning
    Wang, Zhihao
    Jiang, Dingde
    Huo, Liuwei
    Yang, Wei
    [J]. WIRELESS NETWORKS, 2021,
  • [39] Deep learning based sarcasm detection and classification model
    Bhukya, Raghuram
    Vodithala, Swathy
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 2053 - 2066
  • [40] A Camouflaged Object Detection Model Based on Deep Learning
    Wang, Yong
    Li, Ling
    Yang, Xin
    Wang, Xinxin
    Liu, Hui
    [J]. PROCEEDINGS OF 2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS), 2020, : 150 - 153