Energy-Efficient Information Placement and Delivery Using UAVs

被引:3
作者
Al-Habob, Ahmed A. [1 ]
Dobre, Octavia A. [2 ]
Muhaidat, Sami [3 ]
Poor, H. Vincent [4 ]
机构
[1] York Univ, Lassonde Sch Engn, Toronto, ON M3J 1P3, Canada
[2] Mem Univ, Fac Engn & Appl Sci, St John, NF A1B 3X5, Canada
[3] Khalifa Univ, Dept Elect & Comp Engn, Ctr Cyber Phys Syst, Abu Dhabi, U Arab Emirates
[4] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Trajectory; Autonomous aerial vehicles; Servers; Internet of Things; Genetic algorithms; Energy consumption; Performance evaluation; Ant colony optimization (ACO); information placement and delivery; multichromosome genetic algorithm (GA); unmanned aerial vehicles (UAVs); DATA DISSEMINATION; TRAJECTORY DESIGN; OPTIMIZATION; MAXIMIZATION; MINIMIZATION; NETWORKS; INTERNET;
D O I
10.1109/JIOT.2022.3200916
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article focuses on minimizing the energy consumption of a fleet of unmanned aerial vehicles (UAVs) disseminating information to a set of Internet of Things devices. In the considered scenario, each device wants to download a subset of files from a library of files. Considering the storage capacity of the UAVs, a framework is provided that minimizes energy consumption by optimally selecting the contributing UAVs, placing files, and planning the trajectory of each contributing UAV. In this framework, a combinatorial optimization problem is formulated, which is hard to solve directly for a practical number of devices, files, and/or UAVs. In order to tackle this challenge, we develop three solution approaches, namely, a multichromosome genetic algorithm (GA), a hybrid genetic-ant colony algorithm, and a GA with heuristic file placement. Results show that the proposed solution approaches minimize the total energy consumption and provide near-optimal solutions. Results also illustrate that the proposed framework optimizes the number of UAVs participating in the information delivery mission.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 50 条
  • [41] Energy-Efficient Service Placement for Latency-Sensitive Applications in Edge Computing
    Premsankar, Gopika
    Ghaddar, Bissan
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (18) : 17926 - 17937
  • [42] Fair and Energy-Efficient Coverage Optimization for UAV Placement Problem in the Cellular Network
    Liu, Yaxi
    Huangfu, Wei
    Zhou, Huan
    Zhang, Haijun
    Liu, Jiangchuan
    Long, Keping
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (06) : 4222 - 4235
  • [43] Power Allocation for Energy-Efficient Optimization in IoT-Based Distributed Antenna System With Imperfect Channel State Information
    Xu, Weiye
    Yu, Xiangbin
    Teng, Tao
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (20) : 20003 - 20017
  • [44] Energy-efficient and quality-aware part placement in robotic additive manufacturing
    Ghungrad, Suyog
    Mohammed, Abdullah
    Haghighi, Azadeh
    JOURNAL OF MANUFACTURING SYSTEMS, 2023, 68 : 644 - 650
  • [45] Resource Allocation and 3-D Placement for UAV-Enabled Energy-Efficient IoT Communications
    Liu, Yanming
    Liu, Kai
    Han, Jinglin
    Zhu, Lipeng
    Xiao, Zhenyu
    Xia, Xiang-Gen
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (03): : 1322 - 1333
  • [46] Energy-Efficient Resource Allocation and Subchannel Assignment for NOMA-Enabled Multiaccess Edge Computing
    Liu, Lina
    Sun, Bo
    Tan, Xiaoqi
    Tsang, Danny H. K.
    IEEE SYSTEMS JOURNAL, 2022, 16 (01): : 1558 - 1569
  • [47] Fresh, Fair and Energy-Efficient Content Provision in a Private and Cache-Enabled UAV Network
    Yang, Peng
    Guo, Kun
    Xi, Xing
    Quek, Tony Q. S.
    Cao, Xianbin
    Liu, Chenxi
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2022, 16 (01) : 97 - 112
  • [48] Energy-efficient cache node placement using genetic algorithm in wireless sensor networks
    Srivastava, Juhi R.
    Sudarshan, T. S. B.
    SOFT COMPUTING, 2015, 19 (11) : 3145 - 3158
  • [49] Joint Optimization of Resource Allocation, Phase Shift, and UAV Trajectory for Energy-Efficient RIS-Assisted UAV-Enabled MEC Systems
    Qin, Xintong
    Song, Zhengyu
    Hou, Tianwei
    Yu, Wenjuan
    Wang, Jun
    Sun, Xin
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2023, 7 (04): : 1778 - 1792
  • [50] An Energy-Efficient Controller for Wirelessly-Powered Communication Networks
    Movahednasab, Mohammad
    Makki, Behrooz
    Omidvar, Naeimeh
    Pakravan, Mohammad Reza
    Svensson, Tommy
    Zorzi, Michele
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (08) : 4986 - 5002