Energy-Efficient Information Placement and Delivery Using UAVs

被引:3
|
作者
Al-Habob, Ahmed A. [1 ]
Dobre, Octavia A. [2 ]
Muhaidat, Sami [3 ]
Poor, H. Vincent [4 ]
机构
[1] York Univ, Lassonde Sch Engn, Toronto, ON M3J 1P3, Canada
[2] Mem Univ, Fac Engn & Appl Sci, St John, NF A1B 3X5, Canada
[3] Khalifa Univ, Dept Elect & Comp Engn, Ctr Cyber Phys Syst, Abu Dhabi, U Arab Emirates
[4] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Trajectory; Autonomous aerial vehicles; Servers; Internet of Things; Genetic algorithms; Energy consumption; Performance evaluation; Ant colony optimization (ACO); information placement and delivery; multichromosome genetic algorithm (GA); unmanned aerial vehicles (UAVs); DATA DISSEMINATION; TRAJECTORY DESIGN; OPTIMIZATION; MAXIMIZATION; MINIMIZATION; NETWORKS; INTERNET;
D O I
10.1109/JIOT.2022.3200916
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article focuses on minimizing the energy consumption of a fleet of unmanned aerial vehicles (UAVs) disseminating information to a set of Internet of Things devices. In the considered scenario, each device wants to download a subset of files from a library of files. Considering the storage capacity of the UAVs, a framework is provided that minimizes energy consumption by optimally selecting the contributing UAVs, placing files, and planning the trajectory of each contributing UAV. In this framework, a combinatorial optimization problem is formulated, which is hard to solve directly for a practical number of devices, files, and/or UAVs. In order to tackle this challenge, we develop three solution approaches, namely, a multichromosome genetic algorithm (GA), a hybrid genetic-ant colony algorithm, and a GA with heuristic file placement. Results show that the proposed solution approaches minimize the total energy consumption and provide near-optimal solutions. Results also illustrate that the proposed framework optimizes the number of UAVs participating in the information delivery mission.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 50 条
  • [21] UAV-Enabled Energy-Efficient Aerial Computing: A Federated Deep Reinforcement Learning Approach
    Wu, Qianqian
    Liu, Qiang
    He, Ying
    Wu, Zefan
    IEEE TRANSACTIONS ON RELIABILITY, 2024,
  • [22] Energy-Efficient UAVs Coverage Path Planning Approach
    Ahmed, Gamil
    Sheltami, Tarek
    Mahmoud, Ashraf
    Yasar, Ansar
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 136 (03): : 3239 - 3263
  • [23] An Energy-Efficient Multilevel Secure Routing Protocol in IoT Networks
    Zhang, Yinghui
    Ren, Qin
    Song, Kun
    Liu, Yang
    Zhang, Tiankui
    Qian, Yi
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (13) : 10539 - 10553
  • [24] Stochastic Optimization-Aided Energy-Efficient Information Collection in Internet of Underwater Things Networks
    Fang, Zhengru
    Wang, Jingjing
    Du, Jun
    Hou, Xiangwang
    Ren, Yong
    Han, Zhu
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (03) : 1775 - 1789
  • [25] Mobile Unmanned Aerial Vehicles (UAVs) for Energy-Efficient Internet of Things Communications
    Mozaffari, Mohammad
    Saad, Walid
    Bennis, Mehdi
    Debbah, Merouane
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (11) : 7574 - 7589
  • [26] Secure and Energy-Efficient Beamforming for Simultaneous Information and Energy Transfer
    Nasir, Ali Arshad
    Hoang Duong Tuan
    Duong, Trung Q.
    Poor, H. Vincent
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (11) : 7523 - 7537
  • [27] Energy-Efficient UAV-Mounted RIS Assisted Mobile Edge Computing
    Zhai, Zhiyuan
    Dai, Xinhong
    Duo, Bin
    Wang, Xin
    Yuan, Xiaojun
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (12) : 2507 - 2511
  • [28] Energy-Efficient Data Collection and Device Positioning in UAV-Assisted IoT
    Wang, Zijie
    Liu, Rongke
    Liu, Qirui
    Thompson, John S.
    Kadoch, Michel
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (02) : 1122 - 1139
  • [29] An Energy-Efficient Strategy for Microcontrollers
    Wu, Huanjie
    Chen, Chun
    Weng, Kai
    APPLIED SCIENCES-BASEL, 2021, 11 (06):
  • [30] Energy-Efficient UAV Communications: A Generalized Propulsion Energy Consumption Model
    Dai, Xinhong
    Duo, Bin
    Yuan, Xiaojun
    Tang, Wanbin
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (10) : 2150 - 2154